Space Probe #1 passes very close to earth at a time that both we (on earth) and the onboard computer on Probe 1 decide to call t = 0 in our respective frames. The probe moves at a constant speed of 0.5$c$ away from earth. When the clock aboard Probe 1 reads t = 60sec, it sends a light signal straight back to earth.
The mean lifetime of muons is 2 $\mu\text{s}$ in their rest frame. Muons are produced in the upper atmosphere, as cosmic-ray secondaries.
A group of $\pi$ mesons (pions) are observed to be traveling at $u’ = 0.8c$ in a physics laboratory. The mean lifetime (let’s call it $\lambda$ ) for unstable particles undergoing exponential decay is the average time for a group of particles to be reduced to $1/e$ of their original number. We can express this mathematically as: $N_t = N_0 exp(−\Delta t / \lambda)$. We see then that for $\Delta t = \lambda$ , $N_t = N_0 exp(−1) = (1 / e) ⋅ N_0$
It is important to understand that the effects of special relativity are in no way due to the fact that light travels at a finite speed, but rather due to the fact that the speed of light is the same finite quantity in any inertial reference frame. We can always take into account the time it takes for light to travel some distance, and in fact, we must do so in order to ensure that all the local clocks at rest relative to each other in our frame of reference are properly synchronized. The goal of this problem is to understand the difference between what a single observer perceives (with her eyes), and what a system of local observations made with synchronized clocks will record. The main issue is that a single observer can only perceive information that has actually had time to reach her. This means the one observer is only going to see things as they arrive, usually delayed by the speed of light from where the events actually happened. Things that happened farther away, but at earlier times, will be arriving at the location of a single observer at the same time. Consider a rod of proper length $l_0$ , moving at speed $v$, relative to frame S. Careful measurements made by local observers in S will show that the rod has the contracted length: $l = l_0/\gamma$.
But now consider what is seen by a single Observer Q:
What Observer Q sees at any one instant is determined by the light entering her eyes at that instant. Now, consider the light reaching Observer Q at one instant from the front and back ends of the rod.
Make sure to read the feedback that you received on your figure/models and think about how you and your partner are going to work through these details.
At this point, you should produce draft figures for poster with captions. You should have pressed onward with your calculations and produced appropriate figures for your poster with captions. The “graphic” and caption should be turned in. These need not be complete in the sense that you should continue working on your calculations and models until the poster is turned in. By draft, I do mean draft, so any figures that you are thinking about putting in the poster, please include them in their current form. Make sure to give me enough information to:
In addition, please continue to reflect on:
You will turn in both your “notebook” and your self-reflection using the same GitHub repository you started for Project 2. Make sure that you sync your repository first to get the new feedback!