Homework 10 focuses on developing ideas about the D-field including how to apply Gauss’ Law for $\mathbf{D}$ and the relationships between $\mathbf{D}$, $\mathbf{E}$, and $\mathbf{P}$.
1. Bound charges and the D-field
Consider a long teflon rod, (a dielectric cylinder), radius $a$. Imagine that we could somehow set up a permanent polarization $\mathbf{P}(s,\phi,z) = k\mathbf{s} ( = ks\hat{s})$, where $s$ is the usual cylindrical radial vector from the $z$-axis, and $k$ is a constant). Neglect end effects, the cylinder is long.
- Calculate the bound charges $\sigma_{bound}$ (on the outer surface) and $\rho_{bound}$ (in the interior of the rod). What are the units of your constant $k$? Show that the units work out in all formulas you have used involving $k$.
- Next, use these bound charges (along with Gauss’ law, this problem has very high symmetry!) to find the electric field, $\mathbf{E}$ inside and outside the cylinder. (Your answer should include both the direction and magnitude.)
- Finally, determine the electric displacement field ($\mathbf{D}$) inside and outside the cylinder using the fundamental definition ($\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$) and verify that “Gauss’ law for D-fields” works out. Explain briefly in words why your answers are what they are.
2. Bound charges and the D-field II
Now let’s hollow out that teflon rod, so it has inner radius $b$, and outer radius is (still) $a$. Just to make things a little different here, suppose we now set up a different polarization within the teflon material, namely $\mathbf{P}(s,\phi,z) = k\hat{s}$ for $b<s<a$ and where $k$ is a given constant.
- We have vacuum for $s<b$ and $s>a$. What does that tell you about $\mathbf{P}$ in those regions? Find the bound charges $\sigma_{bound}$ (on inner and outer surfaces of the hollow rod) and $\rho_{bound}$ (everywhere else).
- Use these bound charges, along with Gauss’ law, to find the electric field, $\mathbf{E}$, everywhere in space. (Your answer should include the direction and magnitude.)
- Use Gauss’ Law for D-fields to find $\mathbf{D}$ everywhere in space. This should be quick – use symmetry! Are there any free charges in this problem? Use this (simple) result for $\mathbf{D}$ along with $\mathbf{D}=\varepsilon_0 \mathbf{E}+\mathbf{P}$ to find $\mathbf{E}$ everywhere in space. (This should serve as a check for part 1, and shows why sometimes thinking about D-fields is easier and faster!)
3. Point charge in a spherical plastic shell
A point charge $+Q$ is at the center of a spherical plastic shell (inner radius $a$, outer radius $b$) The shell is a linear dielectric, with a dielectric constant $\varepsilon_r$. The shell is electrically neutral (it has no free charges).
- Compute $\mathbf{E}$, $\mathbf{D}$, and $\mathbf{P}$ everywhere.
- How is $\mathbf{E}$ inside the plastic ($a<r<b$) different from what it would have been if the plastic were not present? (Explain why/how this difference arises physically.)
- Sketch $\mathbf{E}(r)$, briefly commenting on any interesting features.
- Similarly, sketch $\mathbf{D}(r)$.
4. Injecting free charges
A solid sphere (radius $R$) of linear dielectric material (dielectric constant $\varepsilon_r$) has been “injected” with a uniform free charge density $\rho_f$ throughout its volume.
- Find the potential at the center of the sphere (with $V(\infty)=0$). Hint: You might want to find D first.
- Does your answer come out larger or smaller than for a simple sphere of charge with uniform charge density $\rho_f$ (that is, if you had neglected the effect of the dielectric constant)? Would that mean setting $\varepsilon_r$ to 0, or to 1? Does this result make physical sense to you? Explain briefly.
- What do you get in the limit of infinite dielectric constant? What physical situation does that limit remind you of?