The complex exponential: $e^{i\omega t}$ is useful in calculating properties of many time-dependent equations. According to Euler, we can also write this function as:
1. $\cos(i \omega t) + \sin (i \omega t)$
2. $\sin (\omega t) + i \cos(\omega t)$
3. $\cos(\omega t) + i \sin (\omega t)$
4. MORE than one of these is correct
5. None of these is correct!
Note:
* Correct Answer: C
* Just a reminder of the euler equation for the future
## Announcements
* Quiz 3 (next Friday 2/22) - RLC circuits
* Solve a circuit problem using the phasor method
* Discuss limits on the response and how it might act as a filter
What is $\vert 2+i \vert$?
1. $1$
2. $\sqrt{3}$
3. $5$
4. $\sqrt{5}$
5. Something else!
Note:
* Correct Answer: D
* Use pythagoras in the complex plane
What is $(1+i)^2/(1-i)$?
1. $e^{i\pi/4}$
2. $\sqrt{2}e^{i\pi/4}$
3. $e^{i3\pi/4}$
4. $\sqrt{2}e^{i3\pi/4}$
5. Something else!
Note:
* Correct Answer: D
* Best to convert to euler with phase and just use the rules for adding and subtracting of exponents
Which point below best represents $4e^{i3\pi/4}$ on the complex plane?
<img src="./images/complex_numbers_graph.png" align="center" style="width: 600px";/>
Note:
* Correct Answer: D
What is $Re\left[\frac{e^{i\omega t}}{1+i}\right]$?
1. $\frac{1}{\sqrt{2}}\cos(\omega t + \pi/4)$
2. $\frac{1}{\sqrt{2}}\cos(\omega t - \pi/4)$
3. $\frac{1}2\cos(\omega t + \pi/4)$
4. $\frac{1}2\cos(\omega t - \pi/4)$
5. Something else
Note:
* Correct Answer: B