True or False: The dot product (in 3 space) is invariant to rotations.
$\mathbf{a} \cdot \mathbf{b} \equiv a_{\mu} b^{\mu}$
A. True
B. False
C. No idea

Displacement is a defined quantity

$$
\Delta x^{\mu} \equiv\left(x_{A}^{\mu}-x_{B}^{\mu}\right)
$$

Is the displacement a contravariant 4-vector?
A. Yes
B. No
C. Umm...don't know how to tell
D. None of these.

Be ready to explain your answer.

I have seen the Eisntein summation notation before:

$$
\mathbf{a} \cdot \mathbf{b} \equiv a_{\mu} b^{\mu}
$$

A. Yes and I'm comfortable with it
B. Yes, but I'm just a little rusty with it
C. Yes, but I don't remember it it all
D. Nope

The displacement between two events Δx^{μ} is a contravariant 4-vector.

Is $5 \Delta x^{\mu}$ also a 4 -vector?
A. Yes
B. No

The displacement between two events Δx^{μ} is a contravariant 4-vector.

Is $\Delta x^{\mu} / \Delta t$ also a 4-vector (where Δt is the time between in events in some frame)?
A. Yes
B. No

Which of the following equations is the correct way to write out the Lorentz scalar product?
A. $a \cdot b=-a^{0} b^{0}+a^{1} b^{1}+a^{2} b^{2}+a^{3} b^{3}$
B. $a \cdot b=a_{0} b^{0}+a_{1} b^{1}+a_{2} b^{2}+a_{3} b^{3}$
C. $a \cdot b=a_{\nu} b^{\nu}$
D. None of these
E. All three are correct

The displacement between two events Δx^{μ} is a contravariant 4-vector.

Is $\Delta x^{\mu} / \Delta \tau$ also a 4-vector (where $\Delta \tau$ is the proper time)?
A. Yes
B. No

Velocity is a defined quantity:

$$
\mathbf{u}=\frac{\Delta \mathbf{r}}{\Delta t}=\left\langle\frac{\Delta x}{\Delta t}, \frac{\Delta y}{\Delta t}, \frac{\Delta z}{\Delta t}\right\rangle
$$

In another inertial frame, seen to be moving to the right,
parallel to x, observers see:

$$
\mathbf{u}^{\prime}=\frac{\Delta \mathbf{r}^{\prime}}{\Delta t^{\prime}}=\left\langle\frac{\Delta x^{\prime}}{\Delta t^{\prime}}, \frac{\Delta y^{\prime}}{\Delta t^{\prime}}, \frac{\Delta z^{\prime}}{\Delta t^{\prime}}\right\rangle
$$

Is velocity a 4 -vector?
A. Yes
B. No

Imagine this quantity:

$$
u^{\mu} \equiv\left(\begin{array}{c}
c \\
\frac{\Delta x}{\Delta t} \\
\frac{\Delta y}{\Delta t} \\
\frac{\Delta z}{\Delta t}
\end{array}\right)
$$

Is this quantity a 4 -vector?
A. Yes, and I can say why.
B. No, and I can say why.
C. None of the above.

Imagine this quantity:

$$
\eta^{\mu} \equiv \frac{1}{\Delta \tau}\left(\begin{array}{c}
c t \\
\Delta x \\
\Delta y \\
\Delta z
\end{array}\right)
$$

Is this quantity a 4 -vector?
A. Yes, and I can say why.
B. No, and I can say why.
C. None of the above.

