The electric field of an E / M wave is described by:

$$
\mathbf{E}=E_{0} \sin (k x-\omega t) \hat{\mathbf{y}}
$$

What is the direction of the magnetic field?
A. $+x$
B. $+y$
C. $-x$
D. $+z$
E. $-z$

An electromagnetic plane wave propagates to the right. Four vertical antennas are labeled 1-4. 1, 2, and 3 lie in the $x-y$ plane. 1,2 , and 4 have the same x-coordinate, but antenna 4 is located further out in the z-direction. Rank the timeaveraged signals received by each antenna.
A. $1=2=3>4$
B. $3>2>1=4$
C. $1=2=4>3$
D. $1=2=3=4$
E. $3>1=2=4$

You have this solution to Maxwell's equations in vacuum:

$$
\widetilde{\mathbf{E}}(x, y, z, t)=\widetilde{\mathbf{E}}_{0} \exp [i(\mathbf{k} \cdot \mathbf{r}-\omega t)]
$$

If this wave travels in the y direction, is polarized in the x direction, and has a complex phase of 0 , what is the x component of the physical wave?
A. $E_{x}=E_{0} \cos (k x-\omega t)$
B. $E_{x}=E_{0} \cos (k y-\omega t)$
C. $E_{x}=E_{0} \cos (k z-\omega t)$
D. $E_{x}=E_{0} \cos \left(k_{x} x+k_{y} y-\omega t\right)$
E. Something else

A point source of radiation emits power P_{0} isotropically (uniformly in all directions). A detector of area a_{d} is located a distance R away from the source. What is the power P_{d}
received by the detector?
A. $\frac{P_{0}}{4 \pi R^{2}} a_{d}$
B. $P_{0} \frac{a_{d}^{2}}{R^{2}}$
C. $P_{0} \frac{a_{d}}{R}$
D. $\frac{P_{0}}{\pi R^{2}} a_{d}$

E. None of these

