Our global statement of energy conservation is:

$$\frac{dU_q}{dt} + \frac{dU_e}{dt} = -\iint \mathbf{S} \cdot d\mathbf{A}$$

Which term describes that energy of the electromagnetic field?

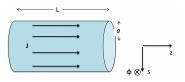
A.
$$\frac{dU_q}{dt}$$

B. $\frac{dU_e}{dt}$
C. $-\iint \mathbf{S} \cdot d\mathbf{A}$
D. ???

Our global statement of energy conservation is:

$$\frac{dU_q}{dt} + \frac{dU_e}{dt} = -\iint \mathbf{S} \cdot d\mathbf{A}$$

What does the integral term (without the minus sign) refer


to?

- A. Total energy coming in
- B. Total energy going out
- C. Rate of total energy coming in
- D. Rate of total energy going out

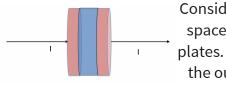
ANNOUNCEMENTS

- Problem 4.3 on this past week's homework is completely extra credit
 - My sincerest apologies for problems 3.5 and 4.3
 - We can talk about 3.5 if y'all want (it's super interesting)
- Quiz (next Friday 3/3) (Topic discussed this Friday!)
- Your papers are due next Friday (3/3) by 5pm
 - As usual, you will use GitHub to turn them in.

Consider a current *I* flowing through a cylindrical resistor of length *L* and radius *a* with voltage *V* applied. What is the E field inside the resistor?


A. $(V/L)\hat{z}$ B. $(V/L)\hat{\phi}$

- C. $(V/L)\hat{s}$
- D. $(Vs/L^2)\hat{z}$
- E. None of the above


Consider a current *I* flowing through a cylindrical resistor of length *L* and radius *a* with voltage *V* applied. What is the B field inside the resistor?

A. $(I\mu_0/2\pi s)\hat{\phi}$ B. $(I\mu_0 s/2\pi a^2)\hat{\phi}$ C. $(I\mu_0/2\pi a)\hat{\phi}$ D. $-(I\mu_0/2\pi a)\hat{\phi}$ E. None of the above Consider a current I flowing through a cylindrical resistor of length L and radius a with voltage V applied. What is the direction of the \mathbf{S} vector on the outer curved surface of the resistor?

Consider the cylindrical volume of space bounded by the capacitor plates. Compute **S** = **E** × **B**/µ₀ at the outside (cylindrical, curved) surface of that volume. Which WAY does it point?

- A. Always inward
- B. Always outward
- C. ???

The energies stored in the electric and magnetic fields are:

- A. individually conserved for both ${\bf E}$ and ${\bf B},$ and cannot change.
- B. conserved only if you sum the ${\bf E}$ and ${\bf B}$ energies together.
- C. are not conserved at all.
- D. ???