

A pair of capacitor plates are charging up due to a current *I*. The plates have an area $A = \pi R^2$. Use the Maxwell-Ampere Law to find

the magnetic field at the point "x" in the diagram as distance *r* from the wire.

A.
$$B = \frac{\mu_0 I}{4\pi r}$$

B. $B = \frac{\mu_0 I}{2\pi r}$
C. $B = \frac{\mu_0 I}{4\pi r^2}$
D. $B = \frac{\mu_0 I}{2\pi r^2}$

E. Something much more complicated

A.
$$E = \sigma/\varepsilon_0$$

B. $E = -\sigma/\varepsilon_0$
C. $E = \sigma/(\varepsilon_0 \pi R^2)$
D. $E = \sigma \pi R^2/\varepsilon_0$
E. Something much more complicated

A. $d\sigma/dt = I$

- B. $\pi R^2 d\sigma/dt = I$
- C. $d\sigma/dt = \pi R^2 I$
- D. Something else

We found the relationship between the current and the change of the charge density was: $\pi R^2 d\sigma/dt = I$. Determine the rate of change of the electric field between the plates, $d\mathbf{E}/dt$.

A. $\sigma/\varepsilon_0 \hat{x}$ B. $I/(\pi R^2 \varepsilon_0) \hat{x}$ C. $-I/(\pi R^2 \varepsilon_0) \hat{x}$ D. $I/(2\pi R \varepsilon_0) \hat{x}$ E. $-I/(2\pi R \varepsilon_0) \hat{x}$

Use the Maxwell-Ampere Law to derive a formula for the manetic at a distance r < R from the center of the plate in terms of the current, I.

A.
$$B = \frac{\mu_0 I}{2\pi r}$$

B. $B = \frac{\mu_0 I r}{2\pi R^2}$
C. $B = \frac{\mu_0 I}{4\pi r}$
D. $B = \frac{\mu_0 I r}{4\pi R^2}$
E. Something else entirely

Use the Maxwell-Ampere Law to derive a formula for the manetic at a distance r > R from the center of the plate in terms of the current,

A.
$$B = \frac{\mu_0 I}{2\pi r}$$

B. $B = \frac{\mu_0 I r}{2\pi R^2}$
C. 0

D. Something else entirely