Let's return to the complete
 definition of Ampere's Law:

$$
\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\varepsilon_{0} \mu_{0} \frac{d \mathbf{E}}{d t}
$$

At location 1, what are the signs of $J_{x}, d E_{x} / d t$, and $(\nabla \times \mathbf{B})_{x}$?
A. $J_{x}<0, d E_{x} / d t<0,(\nabla \times \mathbf{B})_{x}<0$
B. $J_{x}=0, d E_{x} / d t>0,(\nabla \times \mathbf{B})_{x}>0$
C. $J_{x}>0, d E_{x} / d t=0,(\nabla \times \mathbf{B})_{x}>0$
D. $J_{x}>0, d E_{x} / d t>0,(\nabla \times \mathbf{B})_{x}>0$
E. Something else

A pair of capacitor plates are charging up due to a current I. The plates have an area $A=\pi R^{2}$. Use the Maxwell-Ampere Law to find the magnetic field at the point " x " in the diagram as distance r from the wire.
A. $B=\frac{\mu_{0} I}{4 \pi r}$
B. $B=\frac{\mu_{0} I}{2 \pi r}$
C. $B=\frac{\mu_{0} I}{4 \pi r^{2}}$
D. $B=\frac{\mu_{0} I}{2 \pi r^{2}}$
E. Something much more complicated

Let's return to the complete definition of Ampere's Law:

$$
\nabla \times \mathbf{B}=\mu_{0} \mathbf{J}+\varepsilon_{0} \mu_{0} \frac{d \mathbf{E}}{d t}
$$

At location 3 , what are the signs of $J_{x}, d E_{x} / d t$, and $(\nabla \times \mathbf{B})_{x}$?
A. $J_{x}<0, d E_{x} / d t<0,(\nabla \times \mathbf{B})_{x}<0$
B. $J_{x}=0, d E_{x} / d t>0,(\nabla \times \mathbf{B})_{x}>0$
C. $J_{x}>0, d E_{x} / d t=0,(\nabla \times \mathbf{B})_{x}>0$
D. $J_{x}>0, d E_{x} / d t>0,(\nabla \times \mathbf{B})_{x}>0$
E. Something else

A. $E=\sigma / \varepsilon_{0}$
B. $E=-\sigma / \varepsilon_{0}$
C. $E=\sigma /\left(\varepsilon_{0} \pi R^{2}\right)$
D. $E=\sigma \pi R^{2} / \varepsilon_{0}$
E. Something much more complicated

The plates have an area $A=\pi R^{2}$. Determine the relationship between the current flowing in the wires and the rate of change of the charge density on the plates.
A. $d \sigma / d t=I$
B. $\pi R^{2} d \sigma / d t=I$
C. $d \sigma / d t=\pi R^{2} I$
D. Something else

Use the Maxwell-Ampere Law to derive a formula for the manetic at a distance $r<R$ from the center of the plate in terms of the current, I.
A. $B=\frac{\mu_{0} I}{2 \pi r}$
B. $B=\frac{\mu_{0} I r}{2 \pi R^{2}}$
C. $B=\frac{\mu_{0} I}{4 \pi r}$
D. $B=\frac{\mu_{0} I r}{4 \pi R^{2}}$
E. Something else entirely

We found the relationship between the current and the change of the charge density was: $\pi R^{2} d \sigma / d t=I$. Determine the rate of change of the electric field between the plates,
$d \mathbf{E} / d t$.
A. $\sigma / \varepsilon_{0} \hat{x}$
B. $I /\left(\pi R^{2} \varepsilon_{0}\right) \hat{x}$
C. $-I /\left(\pi R^{2} \varepsilon_{0}\right) \hat{x}$
D. $I /\left(2 \pi R \varepsilon_{0}\right) \hat{x}$
E. $-I /\left(2 \pi R \varepsilon_{0}\right) \hat{x}$

Use the Maxwell-Ampere Law to derive a formula for the manetic at a distance $r>R$ from the center of the plate in terms of the current, I.
A. $B=\frac{\mu_{0} I}{2 \pi r}$
B. $B=\frac{\mu_{0} I r}{2 \pi R^{2}}$
C. 0
D. Something else entirely

