ANNOUNCEMENTS

What is $(1+i)^{2} /(1-i)$?
A. $e^{i \pi / 4}$
B. $\sqrt{2} e^{i \pi / 4}$
C. $e^{i 3 \pi / 4}$
D. $\sqrt{2} e^{i 3 \pi / 4}$
E. Something else!

- Project problems are graded
- Sync your repositories to receive feedback
- Responding to your feedback is a big part of the next project problem
- Quiz 3 (next Friday 2/17) - RLC circuits
- Solve a circuit problem using the phasor method
- Discuss limits on the response and how it might act as a filter

$$
\begin{gathered}
I(t)=a \cos (\omega t+\phi)-a \cos (\phi) e^{-R t / L} \\
\text { where } a=\frac{V_{0}}{\sqrt{R^{2}+L^{2} \omega^{2}}} \text { and } \phi=\tan ^{-1}(-L \omega / R) \text {. What } \\
\text { happens to the current when } \omega \rightarrow \infty \text { ? }
\end{gathered}
$$

A. Current is essentially zero, for all time
B. Current dies off completely, eventually goes to zero
C. Eventually, current is constant, V_{0} / R
D. It depends
E. ???

For the RL circuit with driving voltage of $V(t)=V_{0} \cos (\omega t)$, we found a solution for the current as a function of time,

$$
\text { with } I=0 \text { at } t=0 \text {, }
$$

For the RL circuit with driving voltage of $V(t)=V_{0} \cos (\omega t)$,
we found a solution for the current as a function of time,

$$
\text { with } I=0 \text { at } t=0 \text {, }
$$

$$
\begin{gathered}
I(t)=a \cos (\omega t+\phi)-a \cos (\phi) e^{-R t / L} \\
\text { where } a=\frac{V_{0}}{\sqrt{R^{2}+L^{2} \omega^{2}}} \text { and } \phi=\tan ^{-1}(-L \omega / R) \text {. What } \\
\text { happens to the current when } \omega \rightarrow \infty \text { ? }
\end{gathered}
$$

A. Current is essentially zero, for all time
B. Current dies off completely, eventually goes to zero
C. Eventually, current is constant, V_{0} / R
D. It depends
E. ???

Which point below best represents $4 e^{i 3 \pi / 4}$ on the complex plane?

What is the total impedance of this
circuit, $Z_{\text {total }}$?
A. $R+i\left(\omega L+\frac{1}{\omega C}\right)$
B. $R+i\left(\omega L-\frac{1}{\omega C}\right)$
C. $\frac{1}{R}+\frac{1}{i \omega L}+i \omega C$
D. $\frac{1}{\frac{1}{R}+\frac{1}{i \omega L}+i \omega C}$
E. None of these

