What is
$$(1 + i)^2/(1 - i)$$
?

A.
$$e^{i\pi/4}$$

B.
$$\sqrt{2}e^{i\pi/4}$$

C.
$$e^{i3\pi/4}$$

D.
$$\sqrt{2}e^{i3\pi/4}$$

E. Something else!

For the RL circuit with driving voltage of $V(t) = V_0 \cos(\omega t)$, we found a solution for the current as a function of time, with I=0 at t=0.

$$I(t) = a\cos(\omega t + \phi) - a\cos(\phi)e^{-Rt/L}$$
 where $a = \frac{V_0}{\sqrt{R^2 + L^2\omega^2}}$ and $\phi = \tan^{-1}(-L\omega/R)$. What happens to the current when $\omega \to \infty$?

- A. Current is essentially zero, for all time
- B. Current dies off completely, eventually goes to zero
- C. Eventually, current is constant, V_0/R
- D. It depends
- E. ???

ANNOUNCEMENTS

- Project problems are graded
 - Sync your repositories to receive feedback
 - Responding to your feedback is a big part of the next project problem
- Quiz 3 (next Friday 2/17) RLC circuits
 - Solve a circuit problem using the phasor method
 - Discuss limits on the response and how it might act as a filter

For the RL circuit with driving voltage of $V(t) = V_0 \cos(\omega t)$, we found a solution for the current as a function of time,

with
$$I = 0$$
 at $t = 0$,

$$I(t) = a\cos(\omega t + \phi) - a\cos(\phi)e^{-Rt/L}$$

where
$$a=\frac{V_0}{\sqrt{R^2+L^2\omega^2}}$$
 and $\phi=\tan^{-1}(-L\omega/R)$. What

happens to the current when $\omega \to \infty$?

- A. Current is essentially zero, for all time
- B. Current dies off completely, eventually goes to zero
- C. Eventually, current is constant, V_0/R
- D. It depends
- E. ???

Which point below best represents $4e^{i3\pi/4}$ on the complex plane?

What is the total impedance of this circuit, Z_{total} ?

A.
$$R + i \left(\omega L + \frac{1}{\omega C}\right)$$

B.
$$R + i \left(\omega L - \frac{\omega C}{\omega C}\right)$$

C.
$$\frac{1}{R} + \frac{1}{i\omega L_1} + i\omega C$$

A.
$$R + i\left(\omega L + \frac{1}{\omega C}\right)$$

B. $R + i\left(\omega L - \frac{1}{\omega C}\right)$
C. $\frac{1}{R} + \frac{1}{i\omega L} + i\omega C$
D. $\frac{1}{R} + \frac{1}{i\omega L} + i\omega C$

E. None of these

