<img src="./images/capacitor_gauss_D.png" align="right" style="width: 300px";/>
An ideal (large) capacitor has charge $Q$. A neutral linear dielectric is inserted into the gap. We want to find $\mathbf{D}$ in the dielectric.
$$\oint \mathbf{D}\cdot d\mathbf{A} = Q_{free}$$
What is $|\mathbf{D}|$ in the dielectric?
1. $\sigma$
2. $2\sigma$
3. $\sigma/2$
4. $\sigma+\sigma_b$
5. Something else
Note:
* CORRECT ANSWER: A
<img src="./images/capacitor_Q_dielectric.png" align="right" style="width: 300px";/>
An ideal (large) capacitor has charge $Q$. A neutral linear dielectric is inserted into the gap. Now that we have $\mathbf{D}$ in the dielectric, what is $\mathbf{E}$ inside the dielectric?
1. $\mathbf{E} = \mathbf{D} \varepsilon_0 \varepsilon_r$
2. $\mathbf{E} = \mathbf{D}/\varepsilon_0 \varepsilon_r$
3. $\mathbf{E} = \mathbf{D} \varepsilon_0$
4. $\mathbf{E} = \mathbf{D}/\varepsilon_0$
5. Not so simple! Need another method
Note:
* CORRECT ANSWER: B
A point charge $+q$ is placed at the center of a neutral, linear, homogeneous, dielectric teflon shell. Can $\mathbf{D}$ be computed from its divergence?
<img src="./images/teflon_shell_D.png" align="left" style="width: 300px";/>
$$\oint \mathbf{D} \cdot d\mathbf{A} = Q_{free}$$
1. Yes
2. No
3. Depends on other things not given
A point charge $+q$ is placed at the center of a neutral, linear, homogeneous, dielectric **hemispherical** shell. Can $\mathbf{D}$ be computed from its divergence?
<img src="./images/teflon_hemisphere_dielectric.png" align="left" style="width: 300px";/>
$$\oint \mathbf{D} \cdot d\mathbf{A} = Q_{free}$$
1. Yes
2. No
3. Depends on other things not given
## Boundary Conditions
<img src="./images/air-material-boundary-tutorial.png" align="center" style="width: 500px";/>
## Why are these boundary conditions useful?
<img src="./images/cap_w_2_dielectrics.png" align="center" style="width: 500px";/>