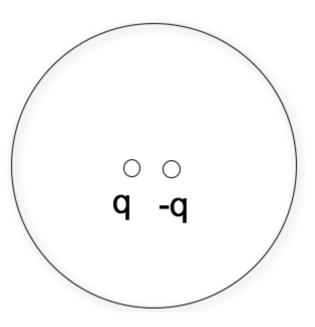
What is the total charge for this distribution?

$$\rho(\mathbf{r}) = \sum_{k=0}^{2} (1+k) q \,\delta^{3}(\mathbf{r} - k\mathbf{a})$$

A. q
B. 2 q
C. 4 q
D. 6 q
E. Something else

ANNOUNCEMENTS

- Exam 1 is coming up! October 2nd (More details next week!)
- And I will post practice exams to Slack!

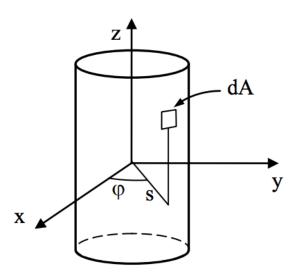

A Gaussian surface which is *not* a sphere has a single charge (q) inside it, *not* at the center. There are more charges outside. What can we say about total electric flux through this surface $\oint_S \mathbf{E} \cdot d\mathbf{A}$?

> A. It is q/ε_0 . B. We know what it is, but it is NOT q/ε_0 . C. Need more info/details to figure it out.

A Gaussian surface which is *not* a sphere has a single charge (q) inside it, *not* at the center. There are more charges outside. Can we use Gauss's Law ($\oint_S \mathbf{E} \cdot d\mathbf{A}$) to find $|\mathbf{E}|$?

A. Yes B. No C. Maybe? An electric dipole (+q and -q, small)distance d apart) sits centered in a Gaussian sphere.

What can you say about the flux of E through the sphere, and $\left|E\right|$ on the sphere?



A. Flux = 0, E = 0 everywhere on sphere surface

- B. Flux = 0, E need not be zero *everywhere* on sphere
- C. Flux is not zero, E = 0 everywhere on sphere
- D. Flux is not zero, E need not be zero...

SLAC (Stanford Linear Accelerator Center) is where quarks (including the charm quark), and the tauon (like a heavier electron) were discovered.

One afternoon, the beam line is struck by lightning, which gives it a uniform surface charge density $+\sigma$. Does that affect the experiment?!

What is the infinitesimal area, dA, of a small patch on a cylindrical shell centered on the z-axis?

A. *dφ dz*B. *s dφ dz*C. *s ds dφ*D. *ds dz*E. Something else

Which way does the electric field due to the positive charges resting on the beam line point for locations *outside the pipe* far from the ends?

A. Roughly radially outward

- B. Exactly radially outward
- C. Roughly radially inward
- D. Exactly radially inward
- E. It varies too much to tell

Which way does the electric field due to the positive charges resting on the beam line point for locations *inside the pipe* far from the ends?

A. Exactly radially outwardB. Exactly radially inwardC. It varies too much to tellD. Something else

Consider a spherical Gaussian surface. What is the $d\mathbf{A}$ in $\int \int \mathbf{E} \cdot d\mathbf{A}$?

A. $rd\theta d\phi \hat{r}$ B. $r^2 d\theta d\phi \hat{r}$ C. $r \sin \theta d\theta d\phi \hat{r}$ D. $r^2 \sin \theta d\theta d\phi \hat{r}$ E. Something else Consider an infinite sheet of charge with uniform surface charge density $+\sigma$ lying in the x - y plane. From symmetry arguments, we can argue that $\mathbf{E}(x, y, z)$ can be simplified to:

- A. $\mathbf{E}(x, y)$; direction undetermined
- $\mathsf{B.}\,E_z(x,y)$
- C. $\mathbf{E}(z)$; direction undetermined
- D. $E_z(z)$
- E. Something else

We derived that the electric field due to an infinite sheet with charge density σ was as follows:

$$\mathbf{E}(z) = \begin{cases} \frac{\sigma}{2\varepsilon_0} \hat{k} & \text{if } z > 0\\ \frac{-\sigma}{2\varepsilon_0} \hat{k} & \text{if } z < 0 \end{cases}$$

What does that tell you about the difference in the field when we cross the sheet, $\mathbf{E}(+z) - \mathbf{E}(-z)$?

A. it's zero B. it's σ/ε_0 C. it's $-\sigma/\varepsilon_0$ D. it's $+\sigma/\varepsilon_0 \hat{k}$ E. it's $-\sigma/\varepsilon_0 \hat{k}$