
Homework 8 (Due October 25th)

Homework 8 finishes up our discussion of the relaxation methods with a 2D problem. The bonus part of it
illustrates the simplicity of problems that cannot be solved analytically. The rest of the homework focuses on
another technique for solving for the electriuc potential – using separation of variables in spherical coordinates
– and introduces the concept of the multipole expansions, which is still another way to find the potential in
the “far field”.
Dropbox file request for Homework 8

1. Method of Relaxation for Cartesian Problems

One of the major properties of a solution to Laplace’s equation is that the value of the potential at a point
is equal the average of all the points surrounding it (i.e., a sphere in 3D or a circle in 2D). We can exploit
this property to solve Laplace’s equation numerically by successively computing the average value of the
potential at a point on a mesh (a grid of 2D points in this case) based on the 4 other points that surround
it (see the figure below).
To be explicit, in the simplest relaxation codes, which can run for an inordinate amount of time given the size
of the mesh and the error tolerance demanded, we replace the value of the potential 𝑉𝑖,𝑗 with the arithmetic
average of its closest neighbors on the mesh:

𝑉𝑖,𝑗 = 1
4 (𝑉𝑖−1,𝑗 + 𝑉𝑖,𝑗−1 + 𝑉𝑖,𝑗+1 + 𝑉𝑖+1,𝑗)

The procedure for solving Laplace’s equation numerically involves the following steps:
• Step 1: Slice up the space where ∇2𝑉 = 0 (and the boundary) into a grid of points (called a “mesh”)

that are spaced an equal distance apart. That mesh may have different spacing between points based
on what the details of the problem being solved might be. For example, if the potential is expected to
be change over short distances in some points and not others, it can make sense to change the spacing
to optimize computational time (or memory). In this problem, we will use a mesh of equally spaced
points.

• Step 2: Set the value of the boundary points given the specific problem you intend to solve. This will
typically be done in the initial parts of the program and can be changed easily to solve other kinds of
problems. In this problem, we will start with a non-zero constant value (10 V) on one edge and zero
at the other 3 edges.

• Step 3: Starting at some location away from the boundary, systematically loop through each point
applying the averaging function given above. It would be typical to start at one corner of the mesh
and move systematically across (or down) and then down (or across) calculating the value at each new
point as you go.

• Step 4: Compute the difference between the starting values of the potential and the values after a
full iteration. Compare this difference to the accepted error that you decided on before starting the
calculation, 𝐸𝑟𝑟𝑜𝑟𝑖,𝑗 = 𝑉 𝑛𝑒𝑤𝑖,𝑗 −𝑉 𝑜𝑙𝑑𝑖,𝑗. Here, you could use the average error, the maximum error,
or something else. In this problem, you will can choose what error to use.
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https://www.dropbox.com/request/C8FKzIlh8G1mZkrG7Ljt


Figure 1: Mesh
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• Step 5: Repeat steps 3 and 4 until the computed error is below the accepted error. Note that you
should build in a maximum number of steps to take in case the code doesn’t coverge on an answer
quickly.

• Step 6: Plot the results as either a 3D plot or a contour map (or both). In this problem, you are
asked to produce both plots.

1. Using the code you wrote for Problem 5 on the last homework, expand it to solve the 2D problem
where one boundary is set at 10V and the others are set to zero. You will have to pick a reasonable
step size for the mesh (make sure it can be adjusted!). If you did not complete this problem, you can
download this notebook from Slack.

2. Produce a 3D Plot of the potential.
3. Review how to make a contour plot using matplotlib and produce a contour plot of your results.
4. Determine how many iterations on the mesh (look for the print statements at the end of the code) are

needed to obtain an error tolerances of: 1e-2, 1e-3, 1e-4, 1e-5, 1e-6, and 1e-7. You might have to adjust
the maximum number of iterations as the error tolerance is decreased.

5. Set the value of one of the boundaries to be a stepwise value (e.g., half the points to be 10V and the
other half to -10V) with the other 3 boundaries to 0V. Repeat parts 2 and 3. Make note of the shape
of the potenital plot. Are there any local max or min? Do they go away with tighter error tolerance?

6. BONUS Put a hole in the mesh. Set the exterior boundary to anything you like, but select several
points in the interior of the mesh to bound the problem as well. That is fix the potential on several
interiro points. This is like having a 2D cavity with an interior boundary. This problem cannot be
solved analytically, but is very easy to conceive.

2. Sphere with a known potential

We have a sphere (radius, 𝑅) where we have glued charges to the outside such that the electric potential at
the surface of the sphere is given by:

𝑉0 = 𝑘 cos 3𝜃

where 𝑘 is some constant.
You are going to find the potential inside and outside the sphere (there are no charges other than those at
the surface of the sphere) as well as the charge density 𝜎(𝜃) on the surface of the sphere. Each part of this
problem is meant to walk you through the process for solving these kinds of boundary-value problems.

1. Rewrite the potential at the surface using Legendre polynomials. You will need to dust off some trig
identities to do this. You can find a listing of Legendre polynomials online.

2. Using this boundary condition and the knowledge that 𝑉 should be finite inside the sphere, find the
electric potential, 𝑉 (𝑟, 𝜃), inside this sphere. You do not have to re-derive the general solution to
Laplace’s equation, just use the result:

𝑉 (𝑟, 𝜃) = ∑
𝑙

(𝐴𝑙𝑟𝑙 + 𝐵𝑙
𝑟𝑙+1 ) 𝑃𝑙(cos 𝜃)

3. Using the same boundary condition and the knowledge that 𝑉 should vanish far from the sphere, find
the electric potential, 𝑉 (𝑟, 𝜃), outside this sphere.

4. Show explicitly that your solutions to parts 2 and 3 match at the surface of the sphere.
5. Take the “normal” derivative of each of your solutions (𝜕𝑉 /𝜕𝑟) and use their difference at the surface

to find the charge on the surface:
(𝜕𝑉𝑜𝑢𝑡

𝜕𝑟 − 𝜕𝑉𝑖𝑛
𝜕𝑟 ) = − 𝜎

𝜀0

6. Sketch the charge distrbution on the surface of the sphere.
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http://matplotlib.org/examples/pylab_examples/contour_demo.html
http://mathworld.wolfram.com/LegendrePolynomial.html


3. Solving Laplace’s Equation in Cylindrical Coordinates

We have gone through how to solve Laplace’s equation in Cartesian and spherical coordinates. In both cases,
finding a separable and general solution was possible. In fact, there are a number of possible coordinate
systems where we can do this, but the most relevant to this class (besides Cartesian and spherical) is
cylindrical coordinates.
In this problem, you will develop the general solution to Laplace’s equation in cylindrical coordinates where
there is no dependence on the 𝑧 coordinate (i.e., where we have cylindrical symmetry).

1. Starting from Laplace’s equation in Cylindrical coordinates, use the ansatz 𝑉 (𝑠, 𝜙) = 𝑆(𝑠)Φ(𝜙) to con-
vert the problem from one partial differential equation to two 2nd order ordinary differential equations
– one for 𝑆(𝑠) and one for Φ(𝜙).

2. As we have argued twice, each of those differential equations is equal to a constant. Which constant is
positive and which is negative? Explain your choice. Think about what happens when you rotate your
problem by 2𝜋 in the 𝜙 direction, should the physics care that you’ve done that? Going forward, choose
the positive constant to be +𝑘2 and the negative one to be −𝑘2.

3. Solve the differential equation for Φ(𝜙) to obtain the general solution for Φ(𝜙). Hint: Φ(𝜙) = Φ(𝜙+2𝜋)
so this puts an additional condition on 𝑘 that it must be an integer with 𝑘 ≥ 0.

4. Armed with this information about 𝑘, solve the differential equation for 𝑆(𝑠) to obtain the general
solution for 𝑆(𝑠). Be careful to treat 𝑘 = 0 separately as that generates an additional and completely
physical solution!

5. Combine your solutions to Parts 3 and 4 to generate the complete general solution 𝑉 (𝑠, 𝜙) = 𝑆(𝑠)Φ(𝜙).
6. The potential at a distance 𝑠 away from an infinite line charge (which should be captured by this

solution) is: 𝑉 (𝑠) = 2𝜆
4𝜋𝜀0

ln(𝑠) + constant, which terms in general solution vanish to capture this
solution?

This problem is tough. But here’s a little help. The general solution for the electric potential in cylindrical
coordinates (with cylindrical symmetry) is:

𝑉 (𝑠, 𝜙) = 𝑎0 + 𝑏0 ln 𝑠 +
∞
∑
𝑘=1

[𝑠𝑘(𝑎𝑘 cos 𝑘𝜙 + 𝑏𝑘 sin 𝑘𝜙) + 𝑠−𝑘(𝑐𝑘 cos 𝑘𝜙 + 𝑑𝑘 sin 𝑘𝜙)]

You will not get full credit for this problem unless your work clearly shows how you this solution is developed.

4. Zen and the Art of the Multipole Expansion

Developing intuition about the dominant contribution to the field that you are looking at will serve you very
well in the future. In this problem, you will look at a few charge distributions (blue - positive charge; orange
- negative charge) and discuss what the dominant contribution (monopole, dipole, quadrapole) to the field
would be far from the distribution (as 𝑟 → ∞).
For each distribution below, discuss which contribution to the multipole expansion dominates at large 𝑟.
Explain how you can tell this is the dominant contribution (use equations, pictures, and words as you see
fit).
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1. Distribution 1:

2. Distribution 2:

3. Distribution 3:
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