Consider a pendulum with a bob of mass $m$ attached to a rigid but massless rod with length $L$. Which equation describes the motion of the bob with respect to the vertical?
1. $m\ddot{\theta} = +g\sin\theta$
2. $m\ddot{\theta} = -g\sin\theta$
3. $mL\ddot{\theta} = -mg\sin\theta$
4. $mL\ddot{\theta} = +mg\sin\theta$
5. Something else
Note: Correct answer: C
Let's take the easy route for the moment.
<img src="./images/simplify.jpg" align="center" style="width: 400px";/>
$\ddot{\theta} \approx -\dfrac{g}{L} \theta$
<img src="./images/morpheus.jpg" align="left" style="width: 400px";/>
What is the general solution to: $\ddot{\theta} \approx -\omega^2 \theta$?
1. $\theta(t) = A \cos \omega t$
2. $\theta(t) = B \sin \omega t$
3. $\theta(t) = A \cos \omega t + B \sin \omega t$
4. $\theta(t) = A \cos (\omega t + \delta)$
5. More than one of these
OMGBBQPIZZA
<img src="./images/SHO_everywhere.jpeg" align="center" style="width: 600px";/>
Nature tends to minimize energy
<img src="./images/SHO.jpg" align="center" style="width: 400px";/>
Have you worked with phase space before?
1. Yes, and I recall how that works
2. Yes, I think so...ok, actually, maybe...
3. I have no idea what you are talking about, hoss
Now that we have sketched $\langle \dot{x}, \dot{v} \rangle = \langle v,0\rangle$...
Sketch $\langle \dot{x}, \dot{v} \rangle = \langle 0,-x\rangle$ in phase space.
What about $\ddot{x} = -\sin{x}$?
<img src="./images/theory.png" align="center" style="width: 350px";/>