We define "Electric Displacement" or "D" field, $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$

If you put a dielectric in an **external** field, it polarizes, adding a new **induced** field (from the bound charges). These superpose, making a **total** electric field. Which of these three E fields is the "E" in the formula for D above?

> A. E_{ext} B. E_{induced} C. E_{tot}

VOTE ON TUESDAY!

- Find your polling station online: vote411.org
- Make sure to vote on state-wide proposals
 - Proposals 1, 2, 3
- Questions about candidates or proposals?
 - Check Ballotpedia
 - More detailed information: Vote Save America
 - Caveat: VSA has a clear liberal bias

We define $\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$, with

$$\oint \mathbf{D} \cdot d\mathbf{A} = Q_{free}$$

A point charge +q is placed at the center of a dielectric sphere (radius R). There are no other free charges anywhere. What is $|\mathbf{D}(r)|$?

A.
$$q/(4\pi r^2)$$
 everywhere
B. $q/(4\varepsilon_0\pi r^2)$ everywhere
C. $q/(4\pi r^2)$ for $r < R$, but $q/(4\varepsilon_0\pi r^2)$ for $r > R$
D. None of the above, it's more complicated
E. We need more info to answer!

For linear dielectrics the relationship between the polarization, \mathbf{P} , and the total electric field, \mathbf{E} , is given by:

$$\mathbf{P} = \varepsilon_0 \chi_e \mathbf{E}$$

where X_e is typically a known constant. Think about what happens if (1) $X_e \rightarrow 0$ or if (2) $X_e \rightarrow \infty$. What do each of these limits describe?

A. (1) describes a metal and (2) describes vacuum B. (1) describes vacuum and (2) describes a metal C. Any material can gave either $X_e \rightarrow 0$ or $X_e \rightarrow \infty$ When there are no free charges, $\rho_{free} = 0$, in a linear dielectric material, the electric potential, V, in that material satisfies Laplace's equation.

$$\nabla^2 V = 0$$

A. True B. False C. ??? A very large (effectively infinite) capacitor has charge Q. A neutral (*homogeneous*) dielectric is inserted into the gap (and of course, it will polarize). We want to find **E** everywhere.

Which equation would you head to first?

A.
$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$$

B. $\oint \mathbf{D} \cdot d\mathbf{A} = Q_{free}$
C. $\oint \mathbf{E} \cdot d\mathbf{A} = \frac{Q}{\varepsilon_0}$

D. More than one of these would work

E. Can't solve unless we know the dielectric is linear.

A very large (effectively infinite) capacitor has charge Q. A neutral (*homogeneous*) dielectric is inserted into the gap (and of course, it will polarize). We want to find **D** everywhere.

Which equation would you head to first?

A.
$$\mathbf{D} = \varepsilon_0 \mathbf{E} + \mathbf{P}$$

B. $\oint \mathbf{D} \cdot d\mathbf{A} = Q_{free}$
C. $\oint \mathbf{E} \cdot d\mathbf{A} = \frac{Q}{\varepsilon_0}$
D. More than one of these would work

An ideal (large) capacitor has charge Q. A neutral linear dielectric is inserted into the gap. We want to find **D** in the dielectric.

$$\oint \mathbf{D} \cdot d\mathbf{A} = Q_{free}$$

For the Gaussian pillbox shown, what is $Q_{free, enclosed}$?

A.
$$\sigma A$$

B. $-\sigma_B A$
C. $(\sigma - \sigma_B) A$
D. $(\sigma + \sigma_B) A$
E. Something else

An ideal (large) capacitor has charge Q. A neutral linear dielectric is inserted into the gap. We want to find **D** in the dielectric.

$$\begin{array}{c|c} & +\sigma \\ \hline & -\sigma_B \\ \hline & +\sigma_B \\ \hline & -\sigma \end{array}$$

$$\oint \mathbf{D} \cdot d\mathbf{A} = Q_{free}$$

Is **D** zero INSIDE the metal? (i.e., on the top face of our cubical Gaussian surface)

- A. It must be zero in there.
- B. It depends.
- C. It is definitely not zero in there.

An ideal (large) capacitor has charge Q. A neutral linear dielectric is inserted into the gap. We want to find **D** in the dielectric.

$$\oint \mathbf{D} \cdot d\mathbf{A} = Q_{free}$$

What is $|\mathbf{D}|$ in the dielectric?

A. σ B. 2σ C. $\sigma/2$ D. $\sigma + \sigma_b$ E. Something else An ideal (large) capacitor has charge Q. A neutral linear dielectric is inserted into the gap. Now that we have **D** in the dielectric, what is **E** inside the dielectric?

A. $\mathbf{E} = \mathbf{D}\varepsilon_0\varepsilon_r$

B.
$$\mathbf{E} = \mathbf{D}/\varepsilon_0\varepsilon_r$$

$$\mathsf{C}.\,\mathbf{E}=\mathbf{D}\varepsilon_0$$

- $\mathsf{D}.\,\mathbf{E}=\mathbf{D}/\varepsilon_0$
- E. Not so simple! Need another method