Which of the following are vectors?

(I) Electric field, (II) Electric flux, and/or (III) Electric charge

A. I onlyB. I and II onlyC. I and III onlyD. II and III onlyE. I, II, and II

Given the location of the little bit of charge (dq), what is $|\vec{\Re}|$?

A.
$$\sqrt{z^2 + r'^2}$$

B. $\sqrt{z^2 + r'^2 - 2zr' \cos \theta}$
C. $\sqrt{z^2 + r'^2 + 2zr' \cos \theta}$
D. Something else

GAUSS' LAW

$$\oint_{S} \mathbf{E} \cdot d\mathbf{A} = \int_{V} \frac{\rho}{\varepsilon_{0}} d\tau$$

The space in and around a cubical box (edge length L) is filled with a constant uniform electric field, $\mathbf{E} = E_0 \hat{y}$. What is the TOTAL electric flux $\oint_S \mathbf{E} \cdot d\mathbf{A}$ through this closed surface?

A. 0
B.
$$E_0L^2$$

C. $2E_0L^2$
D. $6E_0L^2$
E. We don't know $\rho(r)$, so can't answer

A positive point charge +q is placed outside a closed cylindrical surface as shown. The closed surface consists of the flat end caps (labeled A and B) and the curved side surface (C). What is the sign of the electric flux through surface C?

A. positiveB. negativeC. zero

D. not enough information given to decide

Let's get a better look at the side view.

A positive point charge +q is placed outside a closed cylindrical surface as shown. The closed surface consists of the flat end caps (labeled A and B) and the curved side surface (C). What is the sign of the electric flux through surface C?

A. positiveB. negativeC. zero

D. not enough information given to decide

Which of the following two fields has zero divergence?

A. Both do.B. Only I is zeroC. Only II is zeroD. Neither is zeroE. ???

What is the divergence in the boxed region?

A. Zero B. Not zero C. ???

