What do you expect for direction of $\mathbf{B}(P)$? How about direction of $d\mathbf{B}(P)$ generated JUST by the segment of current $d\mathbf{l}$ in red?
<img src="./images/curvy_wire_current.png" align="center" style="width: 400px";/>
1. $\mathbf{B}(P)$ in plane of page, ditto for $d\mathbf{B}(P$, by red$)$
2. $\mathbf{B}(P)$ into page, $d\mathbf{B}(P$, by red$)$ into page
3. $\mathbf{B}(P)$ into page, $d\mathbf{B}(P$, by red$)$ out of page
4. $\mathbf{B}(P)$ complicated, ditto for $d\mathbf{B}(P$, by red$)$
5. Something else!!
Note:
* CORRECT ANSWER: C
## Announcements
* Danny out of town this Wednesday; Dennis will lecture
* Homework 9 due this Friday
* Homework 10 due Dec. 2nd (after Thanksgiving holiday)
* No help session week of Thanksgiving
* But, we will have class on Wednesday
What is the magnitude of $\dfrac{d\mathbf{l}\times\hat{\mathfrak{R}}}{\mathfrak{R}^2}$?
<img src="./images/ringcurrent_R.png" align="right" style="width: 400px";/>
1. $\frac{dl \sin\phi}{z^2}$
2. $\frac{dl}{z^2}$
3. $\frac{dl \sin\phi}{z^2+a^2}$
4. $\frac{dl}{z^2+a^2}$
5. something else!
Note:
* CORRECT ANSWER: D
What is $d\mathbf{B}_z$ (the contribution to the vertical component of $\mathbf{B}$ from this $d\mathbf{l}$ segment?)
<img src="./images/ringcurrent_R.png" align="right" style="width: 400px";/>
1. $\frac{dl}{z^2+a^2}\frac{a}{\sqrt{z^2+a^2}}$
1. $\frac{dl}{z^2+a^2}$
1. $\frac{dl}{z^2+a^2}\frac{z}{\sqrt{z^2+a^2}}$
1. $\frac{dl \cos \phi}{\sqrt{z^2+a^2}}$
5. Something else!
Note:
* CORRECT ANSWER: A
<img src="./images/parallel_currents.png" align="right" style="width: 250px";/>
I have two very long, parallel wires each carrying a current $I_1$ and $I_2$, respectively. In which direction is the force on the wire with the current $I_2$?
1. Up
2. Down
3. Right
4. Left
5. Into or out of the page
Note:
* CORRECT ANSWER: D