Given the two diff. eq's :
$$\dfrac{1}{X}\dfrac{d^2X}{dx^2} = C_1 \qquad \dfrac{1}{Y}\dfrac{d^2Y}{dy^2} = C_2$$
where $C_1+C_2 = 0$. Given the boundary conditions in the figure, which coordinate should be assigned to the negative constant (and thus the sinusoidal solutions)?
<img src="./images/cq_cartesian_bc_1.png" align="right" style="width: 400px";/>
1. x
2. y
3. $C_1 = C_2 = 0$ here
4. It doesn't matter.
Note:
* CORRECT ANSWER: B
### Exact Solutions:
$$V(x,y) = \sum_{n=1}^{\infty} \dfrac{4V_0}{n\pi}\dfrac{1}{\cosh\left(\frac{n\pi}{2}\right)}\cosh\left(\frac{n\pi x}{a}\right)\sin\left(\frac{n \pi y}{a}\right)$$
### Approximate Solutions:
### (1 term; 20 terms)
<img src="./images/saddle_potential.png" align="center" style="width: 400px";/>
<img src="./images/saddle_potential_20.png" align="center" style="width: 400px";/>
### Separation of Variables (Spherical)
<img src="./images/metal_in_ext_field.jpg" align="center" style="width: 500px";/>
$$V(r,\theta) = \sum_{l=0}^{\infty} \left(A_l r^l + \dfrac{B_l}{r^{l+1}}\right)P_l(\cos \theta)$$
V everywhere on a spherical shell is a given constant, i.e. $V(R,\theta) = V_0$. There are no charges inside the sphere. Which terms do you expect to appear when finding V(inside)?
1. Many $A_l$ terms (but no $B_l$'s)
2. Many $B_l$ terms (but no $A_l$'s)
3. Just $A_0$
4. Just $B_0$
5. Something else!
Note:
* CORRECT ANSWER: C