Homework 2 (Due September 16th)

Homework 2 emphasizes the electric field and the principle of superposition that will form the basis
of much of your understanding of electrostatics. This homework makes use of what you learned
from Secs. 1.1-1.4 in Griffiths and adds to it the concepts from Sec. 2.1, which make up the bulk of
the assignment. In addition, we have begun to introduce the idea of finding approximate formulae
using Taylor expansions, which is one of the most common practices of theoretical physics. In this
assignment, you will use a Jupyter notebook to explore the concept of superposition and visualize
the field of a charged rod at any point in space, not just where it is more analytically tractable.

1. Finding the angle between two suspended charges When working through some physics,
you will typically find yourself in a situation where a strict analytical solution to your problem evades
you because the models that you have used have sophisticated algebraic forms that lead to tran-
scendental equations, non-integrable forms, or other problematic situations. In these situations, it
is often instructive to step back a moment and consider under what conditions you want to solve
your problem. Those conditions might provide you with reasonable limitations and assumptions
that lead to approximate forms that get you very close to what you need. In this problem, which
has a familiar context from 184, we will give you the assumption to make. But in future problems,
you might have to decide for yourself: What assumptions and approximations can | make here and
why?

Two charges of identical mass m, one with charge ¢ and the other with charge 4¢, hang from
strings of length [ from a common point. Assume that ¢ is sufficiently small that the electric force
on each mass is quite small compared to the gravitational force on each.

1. Find an approximate expression for the angle 0 that each charge makes with respect to the
vertical.

2. Describe how this assumption of the relationship between the forces (i.e., that the electric
force is small compared to the gravitational force) played out in your calculation, which quan-
tities were approximated and why?

3. Check (show us!) that the units of your solution work out.

4. Show that the limiting behavior for large masses (m), large length (I), and small charge (q)
are physically reasonable.

2. Superposition rules the day The concept of superposition is critically important to the study
of electrodynamics and, for us, it will be a hugely useful in the arguments we make in electrostatics.
Superposition has been called (by Danny, of course) the crux of the biscuit. For this problem,
before working out the math in detail, think about how superposition helps you reason through the
problem.

1. Let’s place 6 equal charges ¢ at the vertices of a hexagon (edge length, 7). What is the net
force on a test charge @ placed at the center of the hexagon?

2. | remove one of the charges — leaving 5 equal charges at the vertices of the hexagon. What
is the net force on the test charge now? Explain your reasoning carefully.

3. Now, | place 7 equal charges ¢ at the vertices of a heptagon (edge length, /) and place the
same test charge @ at the center of the heptagon. What is the net force on that test charge?


https://www.youtube.com/playlist?list=PL8WvZFiJpAr3cZlCr0Gag8BV3-mGdcUBM

4. | remove one of the charges — leaving 6 equal charges at the vertices of the heptagon. What
is the net force on the test charge now? Explain your reasoning carefully.

5. How is the reasoning for questions 2 and 4 similar?

3. Superposition and continuous charge distributions Superposition is a very powerful tool
that can help quantitatively describe the electric field produced by any arbitrary static distribution
of charges. For some problems, it is either incredibly time-consuming to apply superposition an-
alytically to the problem or the problem may not have an analytical solution (i.e., the integral can
be constructed but not solved in closed form). In this problem, you will extend your knowledge of
superposition to include how we might numerically determine the electric field due to a well-known
charge distribution (a rod with a constant linear charge density). By choosing something familiar
like a rod of charge, we hope for you to build intuition about the numerical method we are using.
The magnitude of the electric field at a distance r from the midpoint of a uniformly charged rod of
length L along an axis perpendicular to the rod is given by:
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1. Suppose you have a vertically oriented rod of total charge @Q = +1 uC, centered at the origin

with a length of 1 m. Determine the electric field at the location (0.1,0,0) m? Is your answer
a vector? Because it should be.

Erod =

2. To numerically compute the electric field at a point in space due to a uniformly charged rod,
you must break the rod into small pieces and treat each piece as a point charge. Then,
calculate the electric field due to each piece and use superposition to get the net electric
field at the given point in space. Break each half of the rod described above into 2 pieces
for a total of 4 pieces. Calculate the net electric field at the same location (0.1,0,0) m by
treating each piece as a point charge. How does this compare with the analytic result in part
1? What is your percent error? What can you do to make the numeric result in this exercise
more accurate?

3. Note what a pain it would be if you broke the rod into 100 pieces and had to calculate
electric field by hand! That’s why you prefer to solve it analytically. However, not all charge
distributions are easily solved analytically. Furthermore what if the point P was not along an
axis of symmetry? That’'s why we write computer programs to do the numeric calculation. We
created a Jupyter notebook that walks you through how to perform this numerical integral,
you can download it here (or view it here). For this part, you are trying to reproduce the value
obtained in the previous part, but doing so numerically.

4. Your answer in the previous part does not match the analytic result in from the very first part
because the approximation of each piece of the rod being a point charge at the center of the
piece is not accurate for large pieces. To use smaller piece sizes, we must break the rod into
a larger number of pieces, N. Increase N and run your simulation again. What value of N is
sufficient to give a result that agrees within 1% of the analytic result from the first exercise?
What about 0.1%? What about 0.0001% - “five sigma” agreement? What does this tell you
about making very accurate simulations?

5. BONUS - You should now have a simulation that will solve for the electric field at any speci-
fied location, all you need to do is change the observation location. For this bonus problem,
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../jupyter/HW2-ElectricFieldChargedRod.ipynb
https://github.com/dannycab/phy481msu/blob/gh-pages/jupyter/HW2-ElectricFieldChargedRod.ipynb

worth up to one part of one problem, alter the code (or write another code) to find the electric
field in a circle of a given radius around the line charge.

4. Disk of charge - Checking new results against your intuition In this class, you will of-
ten produce new formulae that describe some situation for which you might not have developed
intuition yet. So, one question you should always be asking yourself is: How do | believe the
physics/math that I've just done?! In this problem, you will develop some techniques for checking
your results against the intuition that you already hold.

Consider a thin disk of radius R with a uniform charge density, +o.
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Figure 1: Disk of Charge

1. Find the electric field at point P, which is a distance z above the center of the disk, by in-
tegrating across the surface of the disk. Yes, we know that this field is well-known, but the
practice of setting up and doing these kinds of integrals is important. The functional form of
your solution is a bit complicated and it might be tough to see how if its correct - you can
certainly look up the answer to check it, but you won't always be able to do that in this class
(and in life)!

2. If you were very far from this disk, what would you expect the field to look like? Use your
intuition from PHY 184. Explicitly check the limiting form of your solution at very large = (i.e.,
when z >> R). By “limiting form”, we mean “how it behaves as a function of distance”. So,
don’t just say “it goes to zero” (if that’s what you think happens). Tell us how, functionally it
vanishes (like 1/z? like e=*? Something else?).

3. If you were very close to the disk, what would expect the field too look like? Again, use your
intuition from PHY 184. Explicitly check the limiting form of your solution at very small z (i.e.,
when z << R).



4. Sketch a qualitatively correct graph of the component of the electric field in the z-direction
along the center line. Be sure to include both the positive and negative z-axis in your graph.
Your answers to parts 2 and 3 might help you here.

5. Ring of charge - Motion of a test charge While we spend a large amount of time working
with source charges and the electric fields that they produce, we are ultimately concerned about
their effect on the motion of other charges (so-called “test charges”). In this problem, you will work
with the electric field due to a ring of charge to develop an approximate solution for the motion
of a test charge by “linearizing” the differential equation that describes the motion. In working
this problem, you will have to dust off some of your classical mechanics knowledge regarding
differential equations.

Consider a thin ring (positive charge, Q; radius, a) that has its central axis directed along the

z-direction as shown.
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Figure 2: Ring of charge

A charged ring with these parameters will produce an electric field along its central axis given by,
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1. Write down the differential equation that describes the motion of a particle with negative
charge —q and mass m that is carefully positioned on the z-axis. Note: this particle has
a charge that is opposite the sign of the ring, so q is the magnitude of the charge of this
particle.

2. What kind of motion do you expect to see for this charge? Why? Does the differential equa-
tion describe that kind of motion? Hint: Consider if this differential equation is analytically
tractable (i.e., can it be solved in closed form).



3. Consider the situation where the particle is very close to a large ring (i.e., where x/a << 1).
Determine the approximate form of the differential equation for this case — keep only terms
that depend linearly on z. This is called “linearizing” the differential equation and makes the
solution analytically tractable.

4. Solve the differential equation for the case where the particle starts from rest at a distance of
xo from the ring. Sketch the resulting motion of the test charge as a function of time. Does
your graph agree with your intuition about the motion?

5. What would happen to the test charge if it was not placed precisely on the central axis?
Why?

6. We have created a Jupyter notebook that models the motion of the test charge using both
the exact and the approximate differential equation. You can download it here (or view it
here). By working through this notebook, we expect you to be able to explain the output of
each model and its assumptions. We also ask that you determine under what conditions the
approximate model is a good one and explain how you know.

6. Finding the electric field of spherical shell using direct integration In this class, you will
learn a mathematical technique (Gauss’ Law) that makes solving for the electric field relatively
simple in comparison to direct integration for certain kinds of problems. In this problem, you
will solve for the electric field that can be determined using Gauss’ Law, but you will use direct
integration instead. This problem involves relatively sophisticated integral, which you are free to
look up, have some software solve, or (for the gluttons for pain) solve yourself. The message
here is: when you run across a difficult piece of math, it's ok to use your resources; just cite your
sources!

1. Find the electric field a distance z above the center of a spherical shell of radius R, which
carries a uniform surface charge density . Do this by explicit integration (i.e., starting from
Griffith’s equation 2.7), please. Just treat the case of z > R (outside the sphere). Express
your answer in terms of the total charge ¢ on the sphere. Also, be careful, when you get a
square root, to take the positive root: vV R? + 22 — 2Rz = (R — z) if R > z, butit's (z — R) if
R < 2.

2. Check your answer using a units check and your knowledge from PHY 184. Briefly discuss
what the answer should be outside the sphere. What should the answer be inside the sphere
and why? You don’t have to solve that problem explicitly.

Historical note: Newton solved part 1 using geometry (no calculus!!) This geometric proof is tricky
and still excites debate: see R. Weinstock Am. J. Phys., 52, (1984), p. 883; H. Erlichson, Am. J.
Phys. 58, (1990) p. 882. Newton thought calculus should be kept secret, and held up publication
of Principia until he could work out these non-calculus proofs. He published calculus much later,
about the same time as Leibniz published his calculus.
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