linear combination
eigeustates not unit vectors unless their in their own basis.
2.

$$
\begin{aligned}
& 1+\rangle_{x} \doteq\binom{1}{0} \\
& 1-7_{x} \div\binom{ 0}{1}
\end{aligned}
$$

(1) $\left.\left|S_{z}\right|+\right\rangle=\frac{\hbar}{2}|+\rangle$
(2) $\left.\left|S_{z}\right|-\right\rangle=-\frac{\hbar}{2}|-\rangle$
$S_{z}=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \quad$ Determine operator
(1) $\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{1 / \sqrt{2}}{1 / \sqrt{2}}=\frac{\hbar}{2}\binom{1 / \sqrt{2}}{1 / \sqrt{2}}$
(2)

$$
\begin{array}{l}
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{l}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}=\frac{\hbar}{2}\binom{1 / \sqrt{2}}{1 / \sqrt{2}}\right. \\
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\binom{1 / \sqrt{2}}{-1 / \sqrt{2}}
\end{array}=\underbrace{-\hbar}_{\text {Sx basis }} \begin{array}{l}
a \\
\frac{\hbar}{2}(1 / \sqrt{2} \\
-1 / \sqrt{2}
\end{array}) \quad \begin{aligned}
& \text { Sy busis } \\
& b \\
& c \\
& d
\end{aligned}
$$

$$
S_{z} \div \frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Determinins operator

$$
A \div\left(\begin{array}{c}
\text { Determinins operator } \\
\langle+| A|+\rangle \\
\langle+| A|-\rangle \mid \\
\langle-| A|+\rangle \\
\lambda\rangle-|A|-\rangle
\end{array}\right)
$$

$$
\begin{aligned}
& A_{x} \doteq\binom{x^{\langle+| A|+\rangle} \times x^{\langle+| A|-\rangle_{x}}}{x\langle-| A|+\rangle \times x^{\langle-| A|-\rangle_{x}}} \\
& S_{z} \div \frac{\pi\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \xrightarrow{\lambda}+\frac{\hbar}{2}}{2 \times 2} \xrightarrow{\operatorname{det}\left(S_{z}-I \lambda\right)=0}
\end{aligned}
$$

quadratic
Spin $1 \rightarrow 3 \times 3 \rightarrow$ chic

$$
\begin{aligned}
& \lambda_{+}=+\frac{\hbar}{2} \lambda=-\frac{\hbar}{2} \\
&1+\rangle=\frac{1}{\sqrt{2}}\left[\begin{array}{c}
{\left[\begin{array}{l}
1 \\
1
\end{array}\right]} \\
{\left[\begin{array}{l}
-1 \\
-1
\end{array}\right]}
\end{array} \quad \begin{array}{c}
1-7=\frac{1}{\sqrt{2}} \\
{\left[\begin{array}{c}
(1) \\
-1
\end{array}\right]} \\
1
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& S_{z}|+\rangle=+\frac{\hbar}{2}|+\rangle \quad \begin{array}{l}
e-\text { value } \\
\text { eq }
\end{array} \\
& \frac{\hbar}{2}\left(\begin{array}{ll}
(0 D)
\end{array}\right)\left(\binom{a}{b}=\frac{\hbar}{2}\binom{a}{b}\right. \\
& 0 a+b=a \quad b=a \quad \text { free } \\
& \mid a+0 b=b \quad a=b \quad \text { tochoose } \\
&\langle+\mid+\rangle=1 \quad|a|^{2}|b|^{2}=1 \\
& a=1 / \sqrt{2}=b
\end{aligned}
$$

Overall phase doesn't matter

$$
\begin{aligned}
& \Rightarrow \begin{array}{c}
\frac{1}{\sqrt{2}}\left[\begin{array}{l}
1 \\
1
\end{array}\right] \Rightarrow \frac{1}{2}\left[\begin{array}{c}
-1 \\
-1
\end{array}\right] \\
x e^{i \pi}
\end{array} \\
& x e^{i \pi} \begin{array}{c}
\substack{\langle\psi \mid \psi\rangle \\
\left(\begin{array}{l}
e^{-i \pi}
\end{array}\right) \\
\underbrace{i \pi}_{1})}
\end{array}
\end{aligned}
$$

$$
|\Psi\rangle=\frac{3}{5}\left|+7+\frac{4}{5}\right|-7
$$

prop. along $S_{x} e$-states?

$$
P_{\text {oj } x_{+}}=\underbrace{k}_{\substack{|+\rangle_{x}}}\langle\overbrace{\substack{|+\rangle_{x} \\ \text { basis }}}^{\substack{\text { dot }}}
$$

$\vec{a} \cdot \vec{b}=$ proa along $^{b} \quad$ (assumption carry bdicection)

$$
\begin{aligned}
P_{\text {raj }} & =\frac{7}{5 \sqrt{2}}|+\rangle_{x} \\
P_{\text {oj }} & =\frac{-1}{5 \sqrt{2}}|-\rangle_{x} \\
P_{\text {rob }}^{+x} & =\left|\left\langle+\mid P_{r j_{x+}}\right\rangle\right|^{2} \\
& =\frac{49}{50}
\end{aligned}
$$

$$
P_{r o b-x}=1 / 50
$$

