In spin systems we we able to
While spin operators a bets in a
matrix representation

$$1+7 \doteq (0)$$
 $1-7 \doteq (0)$ $S_2 \doteq \pm (10)$
 $1+7 \doteq (0)$ $1-7 \doteq (0)$ $S_2 \doteq \pm (0-1)$
eft.
For othe QHO the space is not
finite like for spin $1/2$ a spin 1 systems
it is infinite as $1n > n=0,1,2,3,...$
and $H1n > = (n+\frac{1}{2}) \pm 10 \ln 7$
this seems like a public , but we
can remeber that the Matrix representation
of an operator is diagonal in its own
basis (see above, spin $1/2$ in S_2 basis)
GS we are using the energy
basis $H1n > = (n+\frac{1}{2}) \pm 10 \ln 7$

What about the operators? (3)
Recall,
$$a/n > = \sqrt{n} / n - 1 >$$

 $at/n > = \sqrt{n} / n - 1 >$
 $at/n > = \sqrt{n} / n - 1 >$
We can find the matrix elements
by projecting onto a different
eigenstate,
 $\langle m|a|n > = \langle m|\sqrt{n}|n-1 > = \sqrt{n} S_{m,n-1} + 1 \otimes \sum_{n=1}^{\infty} S_{m,n-1} + 1 \otimes \sum_{n=$