In our analysis of the QHO we have so far avoided finding the position representation, $\varphi_{n}(x)$. Instead we have shown,

$$
\begin{aligned}
& H|n\rangle=E_{n}|n\rangle=\left(n+\frac{1}{2} \hbar n\right)|n\rangle \\
& \langle n \mid n\rangle=1 \quad \text { and } \quad\langle m \mid n\rangle=\delta_{m n}
\end{aligned}
$$

using a operator method with

$$
\hat{H}=\frac{\hat{p}^{2}}{2 m}+\frac{1}{2} m w^{2} \hat{x}^{2}=\hbar w\left(q^{+} a+\frac{1}{2}\right)
$$

with

$$
a \equiv \sqrt{\frac{m \omega}{2 \hbar}}\left(\hat{x}+i \frac{\hat{\rho}}{m \omega}\right)
$$

and

$$
a^{t} \equiv \sqrt{\frac{m w}{2 \hbar}}\left(\hat{x}-i \frac{\hat{p}}{m w}\right)
$$

Typically we would thy to solve our eigenvalue equation for the eigenstates,

$$
\frac{-\hbar^{2}}{2 m} \frac{d^{2} \varphi_{n}}{d x^{2}}+\frac{1}{2} m w^{2} x^{2} \varphi_{n}=E_{n} \varphi_{n}
$$

But, we have a simpler way.
B / C a d at act to "lower" and "raise"
states we can find φ_{0} and just raise it repeatedly to find $\varphi_{n>0}$.

$$
\begin{aligned}
& a|0\rangle=0 \rightarrow\langle x \mid 0\rangle=\varphi_{0}(x) \\
& a \varphi_{0}(x)=0 \\
& \sqrt{\frac{m \omega}{2 \hbar}\left(\hat{x}+i \frac{p}{m \omega}\right) \varphi_{0}(x)=0} \\
& \sqrt{\frac{m \omega}{2 \hbar}\left(x+\frac{\hbar}{m \omega} \frac{d}{d x}\right) \varphi_{0}(x)=0} \begin{aligned}
\frac{d \varphi_{0}(x)}{d x} & =-\frac{m \omega}{\hbar} x \varphi_{0}(x) \quad \begin{array}{l}
\text { Diff } Q \text { for } \\
\varphi_{0}(x)
\end{array}
\end{aligned} .
\end{aligned}
$$

The derivative gives hack the function times x so we ty an ansatz,

$$
\begin{aligned}
& \varphi_{0}(x)=A e^{-\alpha x^{2}} \quad(\text { a Gaussian }) \\
& \frac{d \varphi_{0}(x)}{d x}=-2 \alpha x A e^{-\alpha x^{2}} \\
& -2 \alpha \times A e^{-\alpha x^{2}}=-\frac{m \omega}{\hbar} \times A e^{-\alpha x^{2}} \\
& \alpha=\frac{m \omega}{2 \hbar}!\text { so } \varphi_{0}(x)=A e^{-m \omega x^{2} / 2 \hbar}
\end{aligned}
$$

We still need to find A, we will use normalization.

$$
\begin{aligned}
&\langle 0 \mid 0\rangle=1 \\
& 1=\int_{-\infty}^{\langle\infty}|A|^{2} e^{-m \omega x^{2} / \hbar} d x=2|A|^{2} \int_{0}^{\infty} e^{-m \omega x^{2} / \hbar} d x \\
&=2|A|^{2}\left[\frac{\sqrt{\pi}}{2} \sqrt{\frac{\hbar}{m \omega}}\right]=|A|^{2} \sqrt{\frac{\pi \hbar}{m \omega}}=1 \\
&|A|=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4}
\end{aligned}
$$

So,

$$
\text { So, }\langle x \mid 0\rangle \doteq \varphi_{0}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-m \omega x^{2} / 2 \hbar}
$$

Beyond the Ground State?
$a^{+}|0\rangle \alpha|1\rangle$ the raising operator

But! no gramantee
it is normalized!
will give us back
Something popourtonal to the next state

Let's see how to handle this normalization issue.
First wise that,

* Some Books call

$$
a^{+} a|n\rangle=n|n\rangle
$$ $a^{\dagger} a=N$ the number operator where

$$
N|n\rangle=n|n\rangle
$$ $a \mid n>$

If we compute the norm of $a|n\rangle$ we (5) have,

$$
\begin{aligned}
& |a| n\rangle\left.\right|^{2}=\left(\langle n| a^{+}\right)(a|n\rangle)=\langle n| a^{+} a|n\rangle \\
& =\langle n| n|n\rangle=n\langle n \mid n\rangle=n
\end{aligned}
$$

That is the norm of $a|n\rangle$ is equal to n.
We know a|ny is connected to $|n-i\rangle$, but what is the issue with normalization?
$a|n\rangle \propto|n-1\rangle$ assume a constant of proportionality, c, So that

$$
a|n\rangle=c|n-1\rangle
$$

so that

$$
\left.|a| n\rangle\left.\right|^{2}=|c| n-1\right\rangle\left.\right|^{2}
$$

$$
\begin{align*}
n & \left.=(\langle n-1| c)(c|n-1\rangle)=\langle n-1|\left|c_{1}^{2}\right| n-1\right\rangle \tag{6}\\
& =\left|c_{1}^{2}\langle n-1 \mid n-1\rangle=\right| c^{2}
\end{align*}
$$

So $c=\sqrt{n} \quad$ chosen to be real \downarrow positive
The Lowering Operator

$$
a|n\rangle=\sqrt{n}|n-1\rangle
$$

Let's check 9^{+},

$$
\left.\left|a^{+}\right| n\right\rangle\left.\right|^{2}=(\langle n| a)\left(a^{\dagger}|n\rangle\right)=\langle n| a a^{+}|n\rangle
$$

Note: $\left[a, a^{+}\right]=a a^{+}-a^{+} a=1$
So $a a^{+}=1+a^{+} a$

$$
\begin{aligned}
\left.\left|a^{+}\right| n\right\rangle\left.\right|^{2} & =\langle n| 1+a^{+} a|n\rangle \\
& =\langle n| 1|n\rangle+\langle n| a^{+} a|n\rangle \\
& =\langle n| 1|n\rangle+\langle n| n|n\rangle
\end{aligned}
$$

$$
\begin{aligned}
& =1\langle n \mid n\rangle+n\langle n \mid n\rangle \\
\left.\left|a^{+}\right| n\right\rangle\left.\right|^{2} & =n+1
\end{aligned}
$$

So we again setup the operator equ.

$$
\begin{aligned}
& a^{+}|n\rangle=c|n+1\rangle \\
& \left.\left|a^{+}\right| n\right\rangle\left.\right|^{2}=n+1=|c|^{2} \Rightarrow c=\sqrt{n+1}
\end{aligned}
$$

so
The Raising Operator

$$
d^{+}|n\rangle=\sqrt{n+1}|n+1\rangle
$$

Thus to get the normalized state,

$$
|n+1\rangle=\frac{a^{+}|n\rangle}{\sqrt{n+1}}
$$

We can see a pattern,

$$
\begin{aligned}
& |1\rangle=\frac{1}{\sqrt{1}} a^{+}|0\rangle \\
& |2\rangle=\frac{1}{\sqrt{2}} a^{+}|1\rangle=\frac{1}{\sqrt{2 \cdot 1}}\left(a^{+}\right)^{2}|0\rangle \\
& |3\rangle=\frac{1}{\sqrt{3}} a^{+}|2\rangle=\frac{1}{\sqrt{3 \cdot 2 \cdot 1}}\left(a^{+}\right)^{3}|0\rangle
\end{aligned}
$$

or,

$$
|n\rangle=\frac{1}{\sqrt{n!}}\left(a^{+}\right)^{n}|0\rangle \quad \begin{aligned}
& \text { gets any } \\
& |n\rangle
\end{aligned}
$$

In the spatial basis this is,

$$
\varphi_{n}(x)=\frac{1}{\sqrt{n!}}\left[\sqrt{\frac{m w}{2 \hbar}}\left(x-\frac{\hbar}{m \omega} \frac{d}{d x}\right)\right]^{n} \varphi_{0}(x)
$$

It turns out this position basis Wave function can be written using the Hermite Polynomials!
let $\xi \equiv \sqrt{\frac{m \omega}{\hbar}} x$ then,

$$
\varphi_{0}(x)=\left(\frac{m \omega}{\pi \hbar}\right)^{1 / 4} e^{-\xi^{2} / 2}
$$

and

$$
\varphi_{n}(x)=\left(\frac{m w}{\pi \hbar}\right)^{1 / 4} \frac{1}{2^{n} n!} H_{n}(\xi) e^{-\xi^{2} / 2}
$$

where H_{h} ane the Hermite Polynomials $H_{n}(\xi)$ is tabulated in most QM Books.

$$
\begin{aligned}
& H_{0}(\xi)=1 \\
& H_{1}(\xi)=2 \xi \\
& H_{2}(\xi)=4 \xi^{2}-2 \quad \text { etc. }
\end{aligned}
$$

