In our analysis of the QHO we have (1)
so for avoided finding the position representation,
$$y'_n(x)$$
. Instead we have shown,
 $H/n > = E_n/n > = (n + \frac{1}{2} \tan n) \ln >$
 $\langle n/n > = 1$ and $\langle m/n > = \delta_{mm}$
Using a operator method with
 $\hat{H} = \frac{\hat{p}^2}{2\pi n} + \frac{1}{2} m w^2 \hat{x}^2 = \hbar w (q + \frac{1}{2})$
with $\hat{H} = \int \frac{\pi w}{2\pi} (\hat{x} + i \frac{\hat{p}}{mw})$
and $a^{\dagger} = \int \frac{\pi w}{2\pi} (\hat{x} - i \frac{\hat{p}}{mw})$
Typically we would try to solve our
eigenvalue equation for the eigenstates,
 $-\frac{\hbar^2}{2\pi} \frac{d^2 f_n}{dx^2} + \frac{1}{2} m w^2 x^2 f_n = E_n f_n$

But, we have a simpler way. (2)
Ble a d at act to "lower" and "raise"
States we can find to and just raise
it repeatedly to find these.

$$a|_{07} = 0 \implies \langle x | 07 = f_0(x)$$

 $af_0(x) = 0$
 $\int \frac{mw}{2\pi} \left(x + i \frac{\hat{p}}{mw} \right) f_0(x) = 0$
 $\int \frac{mw}{2\pi} \left(x + \frac{\pi}{mw} \frac{d}{dx} \right) y_0(x) = 0$
 $\int \frac{df_0(x)}{dx} = -\frac{mw}{\pi} x f_0(x) f_0(x)$
The derivative gives back the
function times x so we
ty an ansatz,

We still need to find A, we will use normalization.

$$\begin{cases} 0 | 07 = 1 \\ + \infty \\ 1 = \int |A|^2 e^{-m\omega x^2/\hbar} dx = 2|A|^2 \int e^{-m\omega x^2/\hbar} dx \\ -\infty \\ = 2|A|^2 \left[\frac{\sqrt{\pi}}{2} \int \frac{\pi}{m\omega} \right] = |A|^2 \int \frac{\pi \pi}{m\omega} = 1 \\ \left[|A| = \left(\frac{m\omega}{\pi\pi} \right)^{1/4} \right] \end{cases}$$

So,

$$\langle x | o \rangle \stackrel{\circ}{=} \stackrel{\ell}{\ell_0} (x) = \left(\frac{m\omega}{\pi\hbar}\right)^{\frac{1}{2}} e^{-m\omega x^2/2\hbar}$$
(4)

Beyond the Ground State?

So bet's look at the

State,

aln>

a+107 × 117 the ra	ising operator
But! Will g	ive us back
No granendee E Someth it is to the	ning propurtional
Normalized - To the	u hext State
Let's see how to handbe	Unis normalization
issue,	
	Some Books call
,	ata = N the
$a^{\dagger}a n\rangle = n n\rangle$	number operator

 $a^{\dagger}a = N$ the number operator where N|n > = n|n >

If we compute the norm of aln? we shawe,

$$|a|n?|^{2} = (\langle n|a^{\dagger}\rangle|a|n?) = \langle n|a^{\dagger}a|n?$$

$$= \langle n|n|n? = n \langle n|n? = n$$
That is the norm of aln? is equal
to n.
We know aln? is connected to
In-i?, but what is the issue
with normalization?
 $a|n? \propto |n-i?$ assume a constant
of proportionality, c, so that
 $a|n? = C |n-i?|^{2}$

$$n = (\langle n-1|c \rangle)(c|n-1\rangle) = \langle n-1||c^{2}|n-1\rangle$$

$$= |c^{2}\langle n-1|n-1\rangle = |c^{2}|$$
So $c = \sqrt{n}$ chosen to be real
 $\downarrow positive$

The Lowering Operator
 $a|n \rangle = \sqrt{n}|n-1\rangle$
het's check a^{\dagger} ,
 $|a^{\dagger}|n\rangle|^{2} = (\langle u|a \rangle)(a^{\dagger}|n\rangle) = \langle u|aa^{\dagger}|n\rangle$
Note: $[a,a^{\dagger}] = aa^{\dagger} - a^{\dagger}a = 1$
 $S^{\circ} aa^{\dagger} = 1 + a^{\dagger}a$
 $|a^{\dagger}|n\rangle|^{2} = \langle u|1|n\rangle + \langle u|a^{\dagger}a|n\rangle$
 $= \langle u|1|n\rangle + \langle u|a^{\dagger}a|n\rangle$

$$F$$

$$= |\langle n|n \rangle + n \langle n|n \rangle$$

$$|a^{\dagger}|n \rangle|^{2} = n + 1$$
So we again schop the operator equ.
$$a^{\dagger}|n \rangle = C |n+1 \rangle$$

$$|a^{\dagger}|n \rangle|^{2} = n + 1 = |C|^{2} \implies C = \sqrt{n+1}$$
So
The Raising Operator
$$a^{\dagger}|n \rangle = \sqrt{n+1} |n+1 \rangle$$
Thus to get the normalized state,
$$|n+1 \rangle = \frac{a^{\dagger}|n \rangle}{\sqrt{n+1}}$$

We can see a pattern,

$$|17 = \frac{1}{\sqrt{1}} a^{+}|_{07}$$

 $|27 = \frac{1}{\sqrt{2}} a^{+}|_{17} = \frac{1}{\sqrt{2 \cdot 1}} (a^{+})^{2}|_{07}$
 $|37 = \frac{1}{\sqrt{3}} a^{+}|_{27} = \frac{1}{\sqrt{3 \cdot 2 \cdot 1}} (a^{+})^{3}|_{07}$

Let
$$\overline{Z} = \sqrt{\frac{m\omega}{\pi}} x$$
 then,
 $\int_{0}^{\infty} (x) = \left(\frac{m\omega}{\pi\pi}\right)^{\frac{1}{4}} e^{-\overline{Z}^{2}/2}$
and
 $\int_{n}^{\infty} (x) = \left(\frac{m\omega}{\pi\pi}\right)^{\frac{1}{4}} \frac{1}{|z^{n}n!} H_{n}(\overline{Z}) e^{-\overline{Z}^{2}/2}$
Where H_{n} are the Hermite Polynomials
 $H_{n}(\overline{Z})$ is tabulated in most QM Books.
 $H_{0}(\overline{Z}) = 1$
 $H_{1}(\overline{Z}) = 2\overline{Z}$
 $H_{2}(\overline{Z}) = 4\overline{Z}^{2} - 2 \quad \text{etz}.$