ok we have finally finished! The
3D energy eigenstates of the Hydrogen atom e ane,

$$
|n l m\rangle \stackrel{\circ}{=} R_{n l}(r) Y_{l}^{m}(\theta, \phi)
$$

Monever this energy eijenstates ane simultaneous eigenstates of $L^{2} d L_{z}$!

$$
\begin{aligned}
& H|n l m\rangle=\frac{-13.6 e V}{n^{2}}|n l m\rangle \\
& L^{2}|n l m\rangle=l(\ell+1) \hbar^{2}|n l m\rangle \\
& L_{z}|n l m\rangle=m \hbar|n l m\rangle
\end{aligned}
$$

The position ne presentations of these eigenstates require knowing $n, l, i m$. These states are tabulated in many QM books.

$$
\begin{aligned}
& |100\rangle \doteq \psi_{100}=\frac{1}{\sqrt{\pi}}\left(\frac{z}{a_{0}}\right)^{3 / 2} e^{-z_{r} / a_{0}} \\
& |200\rangle \doteq \psi_{200}=\frac{1}{\sqrt{\pi}}\left(\frac{z}{2 a_{0}}\right)^{3 / 2}\left[1-\frac{z_{r}}{q_{0}}\right] e^{-z_{r} / 2 a_{0}}
\end{aligned}
$$

$$
\begin{aligned}
& |210\rangle \doteq \psi_{20}=\frac{1}{2 \sqrt{\pi}}\left(\frac{z}{2 a_{0}}\right)^{3 / 2} \frac{z r}{a_{0}} e^{-z r / 2 a_{0}} \cos \theta \\
& |21 \pm 1\rangle \div \psi_{21 \pm 1}=\mp \frac{1}{2 \sqrt{2 \pi}}\left(\frac{z}{2 a_{0}}\right)^{3 / 2} \frac{z_{r}}{a_{0}} e^{-z r / 2 a_{0}} \sin \theta e^{ \pm i \phi}
\end{aligned}
$$

etc...
Properties of $\psi_{n e m}$ Solutions
as these results are compiled in tables it's important for us to know how to use them rather than derive them.
(1) Normalization

$$
1=\langle n \operatorname{lm} \mid n \operatorname{lm}\rangle=\int\left|\psi_{n l m}(\theta, \phi)\right|^{2} d V
$$

Which is a full $3 D$ integral,

$$
\langle n \operatorname{lm} \mid n \operatorname{lm}\rangle=\int_{0}^{\infty} \int_{0}^{2 \pi} \int_{0}^{\pi}\left|\psi_{n l m}(\theta, \phi)\right|^{2} r^{2} \sin \theta d \theta d \phi d r
$$

Note that $R_{n e}+Y_{e}^{\text {en }}$ have been normalized separately.

$$
\langle n \ln \mid n \ln \rangle=\{\underbrace{\left\{\int_{0}^{\infty} r^{2}\left|R_{n d}\right|^{2} d r\right.}_{=1}\} \underbrace{\left\{\left[\int_{0}^{2 \pi} \int_{0}\left|V_{\ln }\right|^{2} \sin \theta d \theta d \phi\right\}\right.}_{=1}
$$

Turns out that makes some calculations
Much easier.
(2) The probability density is simply the absolute square of $\psi_{\text {ne }}$,

$$
P(r, \theta, \phi)=\left|\psi_{n l m}(r, \theta, \phi)\right|^{2}=\left|l_{n l}(r) V_{l}^{m}(\theta, \phi)\right|^{2}
$$

By nutiplying by a volume etemunt we find the probability the particle is in some volumes,

$$
\begin{aligned}
P(r, \theta, \phi) & N V
\end{aligned}=\left|\psi_{n l m}(r, \theta, \phi)\right|^{2} d V \quad\left[\begin{array}{ll}
n l \\
& \left.(r) Y_{l}^{m}(\theta, \phi)\right|^{2} r^{2} \sin \theta d \theta d \phi d r
\end{array}\right.
$$

Example: Probability of finding the election in a sphere of radius a_{0} giuen it is in the ground state,

$$
|100\rangle \doteq \psi_{100}=\frac{1}{\sqrt{\pi a^{3}}} e^{-r / a_{0}} \quad\binom{\text { no } z b / c}{\text { Hydrogen } z=1}
$$

$$
\begin{aligned}
& P_{r o b}<a_{0}=\int_{\substack{a l l \theta, \phi \\
r<a_{0}}} P(r, \theta, \phi) d V \\
& =\int_{0}^{a} \int_{0}^{2 \pi} \int_{0}^{\pi} P(r, \theta, \phi) r^{2} \sin \theta d \theta d \phi d r \\
& =\int_{0}^{a} \int_{0}^{2 \pi} \int_{0}^{\pi}\left|R_{n l}(r) Y_{l}^{m}(\theta, \phi)\right|^{2} r^{2} \sin \theta d \theta d \phi d r \\
& =\left\{\int_{0}^{a}\left|R_{n l}(r)\right|^{2} r^{2} d r\right\}\left\{\int_{0}^{2 \pi} \int_{0}^{\pi}\left|Y_{l}^{m}(\theta, \phi)\right|^{2} \sin \theta d \theta d \phi\right\} \\
& \operatorname{Prob}_{r<a_{0}}=\int_{0}^{a}\left|R_{n l}(r)\right|^{2} r^{2} d r
\end{aligned}
$$

for the ground state $n=1, l=0$,

$$
=\int_{0}^{a}\left|R_{10}(r)\right|^{2} r^{2} d r=\int_{0}^{a} r^{2}\left(\frac{4}{a_{0}^{3}}\right) e^{-2 r / a_{0}} d r
$$

Wolfram

$$
P_{r<a_{0}}=1-5 e^{-2} \simeq 0.323
$$

