
 

So far we have limited our discussion of

3D QM to angular solutions for which

we forgo modeling the interactions as

they feature in the radial ega

We posited solutions that we

separable Vcr o Rtr Lol IM
and we found that the sphericalharmonics
could fully describe our angular results
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We also found that the separation
constant A that we introduced was

equal to NIH Allof this results

in a radial equation given by
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b c the last two terms depend only on

r it's common to refer to their sum

as the effective potential like in classical
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But to develop a solution we need a

particular Vcr In this case we

want to work with Hydrogenic atoms so
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We can rewrite the DiffyQ

II eEdFr fe tfh IR o

Ir Sao o so that we cannot

get rid of Vcr and we have
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Nondimensionalizing aDiffy Q
It is common practice in theoretical

physics to remove the dimensionality

in analysis this leads to find characteristic

length mass time energy etc scales but

also parameterizes our results in termsof

these characteristic scales

We will do this partially for Rlr by
recasting our analysis using a dimensionless

variable
of Ma as of yet

Unknown length
scale

so that
pars Rlg

this is a relatively straight forward

process which we can do via replacement



Replace
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This leads to
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p
is dimensionless so is so the units

of µZe2
the
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We identify this as our characteristic

length Ta III



In addition 2M22 has units of Yenergy

So we identity I
zuaz

as a characteristic

energy scale and take the ratio
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Solving for Rcp or Rcr

we will bring a new approach to solving
this differential equation

matching asymptotic solutions f so If 70
this is done in 3 steps

Find Approx Ditty Q for p so

Find ApproxDiffy Q for p o

Match asymptotic solutions with

full DiffyQ

Let you
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We thus expect Rlp e rg

But else blows up as f o so

Rep e f is our asymptote solution
for p soo

Let peso
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it looks like a polynomial Rlp p
Works as all the terms give p 8
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so lets pop that in note we couldhave
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Rlphyl for our asymptotic solution

as if 20
So we get This behaves fine
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Intermediate g
Assume so function fg as ofyet
determined and find theDiffyQ
it satisfies
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Substitution gives
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hooks like a mess but lets try a series
solution
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Ok

3
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Holds for each j and any so gum

vanishes for each j
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f p ocjgJ do wehave a

terms

let j soo
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Assume a jinax such that
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Energy Quantization

with 5 Ya we get

se t IhE II
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For a given n
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And thus we have 3 quantum
numbers


