So far we have limited our discussion of 3D QM E to angular solutions for which we forgo modeling the interactions as they feature in the radial equ.
We posited solutions that we
separable $\psi(r, \theta, \phi)=R(r) \Theta(\theta) \Phi(\phi)$
and we found that the spherical hamanics could fully describe our angular resits,

$$
Y_{l}^{m}(\theta, \phi)=\Theta_{l}^{m}(\theta) \Phi_{m}(\phi)
$$

We also found that the separation Constant, A, that we introduced was equal to $l(l+1)$. All of this results in a radial equation given by,

$$
\left[\frac{-\hbar^{2}}{2 \mu r^{2}} \frac{d}{d r}\left(r^{2} \frac{d}{d r}\right)+V(r)+l(l+1) \frac{\hbar^{2}}{2 \mu r^{2}}\right] R(r)=E R(r)
$$

b/c the last two berms depend only on
r, it's common to netter to their sum e as the "effective potential" (like in Classical)

$$
V_{e f f}(r)=V(r)+l(l+1) \frac{\hbar^{2}}{2 \mu r^{2}}
$$

But to develop a solution we need a particular $V(r)$. In this case, we want to work with Hydrogenic atoms, so $V(r)=-\frac{Z e^{2}}{4 \pi \varepsilon_{0} r} \quad$ Coulomb Potential

We can rewrite the iffy Q,

$$
\frac{d^{2} R}{d r^{2}}+\frac{2}{r} \frac{d R}{d r}+\frac{2 \mu}{\hbar^{2}}\left[E+\frac{z e^{2}}{4 \pi \pi_{0} r}-\frac{\hbar^{2} l(l+1)}{2 \mu r^{2}}\right] R=0
$$

$V(r \rightarrow \infty) \rightarrow 0$ so that we cannot "get rid" of $V(r)$ and we have
$E<0$ bound states of $E>0$ unbandstates.
"Nondimensionalizing" a Diff Q
It is common practice in theoretical plugsics to remove the dimensionality in analysis. this leads to find characteristic length, mass, time, energy, etc. Scales, but also parameterizes our results in terms of these characteristic scales.

We will do this partially for $R(r)$ by recasting our analysis using a dinensinnless variable $\rho=r / a \longleftarrow$ as of yet unknown length Scale
Sothat

$$
R(r) \rightarrow R(\rho)
$$

this is a relatively straight forward process, which we can do via "replacement"

Replace!
$p=r / a$ thus $r=\rho a$
and $\quad \frac{d}{d r}=\frac{d p}{d r} \frac{d}{d p}=\frac{1}{a} \frac{d}{d \rho}$
and $\quad \frac{d^{2}}{d r^{2}}=\frac{d}{d r}\left(\frac{1}{a} \frac{d}{d \rho}\right)=\frac{d \rho}{d r}\left(\frac{1}{a} \frac{d^{2}}{d \rho^{2}}\right)=\frac{1}{a^{2}} \frac{d^{2}}{d \rho^{2}}$
This leads to,

$$
\frac{1}{a^{2}} \frac{d^{2} R}{d \rho^{2}}+\frac{1}{a^{2}} \frac{2}{\rho} \frac{d R}{d \rho}+\frac{2 \mu}{\hbar^{2}}\left[E+\frac{z e^{2}}{4 \pi \varepsilon_{0} a \rho}-\frac{\hbar^{2} l(l+1)}{2 \mu a^{2} \rho^{2}}\right] R=0
$$

or,

$$
\frac{d^{2} R}{d p^{2}}+\frac{2}{\rho} \frac{d R}{d \rho}+\left[\frac{2 \mu a^{2}}{\hbar^{2}} E+\left(\frac{\mu z e^{2}}{4 \pi \pi_{0} \hbar^{2}}\right) \frac{2 a}{p}-\frac{l(l+1)}{p^{2}}\right] R=0
$$

ρ is dimensionless, so is so, the units of $\frac{\mu z e^{2}}{4 \pi r_{2} \hbar^{2}}$ are $1 /$ length
We identity this as our characteristic length $a \equiv \frac{4 \pi \varepsilon_{0} \hbar^{2}}{u z e^{2}}$

In addition $\frac{2 \mu a^{2}}{\hbar^{2}}$ has units of 1/energy So we identity $\frac{\hbar^{2}}{2 \mu a^{2}}$ as a characteristic energy sale and take the ratio,
$E /\left(\hbar^{2} / 2 \mu a^{2}\right)$ as a negative quantity bl $E<0$ gives bound states
So,

$$
-\gamma^{2} \equiv \frac{E}{\hbar^{2} / 2 \mu a^{2}} \quad \gamma^{2}>0
$$

Thus,

$$
\frac{d^{2} R}{d \rho^{2}}+\frac{2}{\rho} \frac{d R}{d \rho}+\left[-\gamma^{2}+\frac{2}{\rho}-\frac{l(l+1)}{\rho^{2}}\right] R=0
$$

is our eigen value equ.

Solving for $R(\rho)$ (or $R(r)$)
We will bring a new approach to solving this differential equation
\Rightarrow Matching asymptotic solutions $\left(\rho \rightarrow 0 \sum \rho \rightarrow \infty\right)$
this is done in 3 steps,
(1) Find Approx Diffy Q for $p \rightarrow \infty$
(2) Find Apmax Diffy Q for $p \rightarrow 0$
(3) Match asymptotic solutions with full Diffy Q.
(1) Let $\varphi \rightarrow \infty$,

$$
\frac{d^{2} R}{d p^{2}}-\gamma^{2} R \approx 0
$$

$$
\text { for } p \rightarrow \infty
$$

We thus expect $R(\rho) \sim e^{ \pm \gamma \rho}$
But $e^{+\gamma \rho}$ blows up as $\rho \rightarrow 0$ so,
$R(\rho) \sim e^{-\gamma \rho}$ is our asymptotic solution.
(2) for $p \rightarrow \infty$
it looks like a polynomial $R(\rho)=\rho^{q}$ works as all the terms give $\rho^{g^{-2}}$

$$
\begin{aligned}
& \text { Let } \rho \rightarrow 0 \\
& \left.\frac{d^{2} R}{d \rho^{2}}+\frac{2}{\rho} \frac{d R}{d \rho}+\underset{\sim}{\left[-\gamma^{2}\right.}+\frac{2}{\rho}-\frac{l(l+1)}{\rho^{2}}\right] R=0 \\
& \frac{d^{2} R}{d p^{2}}+\frac{2}{\rho} \frac{d R}{d \rho}-\frac{l(l+1)}{\rho^{2}} R \approx 0 \quad \text { Aprax } \rho \rightarrow 0
\end{aligned}
$$

so lets pop that in, (note we could have

$$
\begin{gathered}
\frac{d l}{d \rho}=q \rho^{q-1} \quad \frac{d^{2} R}{d q^{2}}=q(q-1) \rho q^{-2} \\
q(q-1) \rho^{q^{-2}}+2 q \rho^{q-2}-l(l+1) \rho^{q^{-2}}=0 \\
q^{2}-q+2 q-l(l+1)=0 \\
q(q+1)-l l l+1)=0
\end{gathered}
$$

thus $g=l$ or $-l-1$
${ }^{\text {so }} R=\rho^{l}$ or $R=\rho^{-(\ell+1)}, \begin{aligned} & \text { blows up for } \\ & \rho \rightarrow 0\end{aligned}$
So
$R(\rho) \sim \rho^{l}$ for our asymptotic solution as $p \rightarrow 0$
So we get
This behaves five

$$
R(\rho) \sim \rho^{l} e^{-\gamma \rho} \text { as } \rho \rightarrow 0 \sum_{i} \rho \rightarrow \infty
$$

(3) Intermediate ρ ?

Assunce so function $f(\rho)$ as of yet determined. and find the Diffy a it satisfies,

$$
\begin{aligned}
& R(\rho)=\rho^{l} e^{-\gamma \rho} f(\rho) \\
& \frac{d R}{d \rho}=l \rho^{l-1} e^{-\gamma \rho} f(\rho)+\rho^{l}\left(-\gamma e^{-\gamma \rho}\right) f(\rho)+\rho^{l-\gamma \rho} f^{\prime}(\rho) \\
&=\rho^{l-1} e^{-\gamma} \rho\left[l f(\rho)-\gamma \rho f(\rho)+\rho f^{\prime}(\rho)\right] \\
& f^{\prime}(\rho)= d f / d \rho \text { BTW} \\
& \frac{d^{2} R}{d \rho^{2}}=\rho^{l-1} e^{-\gamma \rho}\left[(2-2 \gamma-2 \gamma l) f(\rho)+(2+2 l-2 \gamma \rho) f^{\prime}(\rho)\right. \\
&\left.\quad+\rho f^{\prime \prime}(\rho)\right] \\
& f^{\prime \prime}(\rho)=d^{2} f / d \rho^{2} \text { BTW }
\end{aligned}
$$

Substitution gives,

$$
\rho \frac{d^{2} f}{d \rho^{2}}+2(l+1-\gamma \rho) \frac{d f}{d \rho}+2(1-\gamma-\gamma l) f(p)=0
$$

hooks like a ness, but let's thy a series
Solution,

$$
\begin{aligned}
& f(\rho)=\sum_{j=0}^{\infty} c_{j} \rho^{j} \\
& \text { index shift note } \begin{aligned}
& j=-1 \text { term } \\
&=0
\end{aligned} \\
& \frac{d f}{d p}=\sum_{j=0}^{\infty} j c_{j} \rho^{j-1}=\sum_{j=-1}^{\infty}(j+1) c_{j+1} \rho^{j}=\sum_{j=0}^{\infty}(j+1) c_{j+1} p^{j} \\
& \frac{d^{2} f}{d p^{2}}=\sum_{j=0}^{\infty} j(j+1) c_{j+1} \rho^{j-1} \\
& \downarrow_{\text {maintain } \rho^{j} \text { order }}^{\text {main }} \\
& \rho \frac{d^{2} f}{d \rho^{2}}+2(\ell+1) \frac{d f}{d \rho}-2 \gamma \rho \frac{\partial f}{\partial \rho}+2(1-\gamma-\gamma \ell) f=0 \\
& \sum_{j=0}^{\infty} j(j+1) c_{j+1} \rho^{j}+2(\ell+1) \sum_{j=0}^{\infty}(j+1) c_{j+1} p^{j} \\
& -2 \gamma \sum_{j=0}^{\infty} j c_{j} \rho^{j}+2(1-\gamma-\gamma l) \sum_{n=0}^{\infty} c_{j} \rho^{j}=0
\end{aligned}
$$

$$
\sum_{j=0}^{\infty}\left(j(j+1) c_{j+1}+\alpha(l+1)(j+1) c_{j+1}-2 \gamma j c_{j}+2(1-\gamma-\gamma l) c_{j}\right) j=0
$$

Holds for each \dot{y} and any P so sum vanishes for each j!

$$
j(j+1) c_{j+1}+2(l+1)(j+1) c_{j+1}-2 \gamma j c_{j}+2(1-\gamma-\gamma l) c_{j}=0
$$

Thus,

$$
\begin{aligned}
& c_{j+1}(j(j+1)+2(l+1)(j+1))-(2 \gamma j-2(1-\gamma-\gamma l)) c_{j}=0 \\
& c_{j+1}=\frac{2 \gamma j-2+2 \gamma+2 \gamma l}{(j+1)(j+2 l+2)} c_{j} \\
& C_{j+1}=\frac{2 \gamma(j+l+1)-2}{(j+1)(j+2 l+2)} c_{j} \\
& \begin{array}{l}
\text { Recurnucue } \\
\text { relation } \\
\text { coletermines } \\
\text { all coetfs } \\
\text { get } c_{0} \text { from } \\
\langle\psi(t)=1
\end{array}
\end{aligned}
$$

$f(p)=\sum_{j=0}^{\infty} c_{j} \rho^{j} \quad \begin{aligned} & \text { do we have oe } \\ & \text { terms? }\end{aligned}$
let $j \rightarrow \infty$,

$$
c_{j+1} \simeq \frac{2 \gamma_{j}}{j^{2}} c_{j}=\frac{\partial \gamma}{j} c_{j}
$$

Note

$$
e^{\alpha x}=1+\frac{a}{1!} x+\frac{a^{2}}{2!} x^{2}+\frac{a^{3}}{3!} x^{3}+\cdots
$$

here,

$$
c_{j}=\frac{\alpha}{j+1} c_{j} \quad \text { which is } \quad c_{j+1} \cong \frac{\alpha}{j} c_{j}
$$

for $j \rightarrow \infty$
In the large j limit,

$$
f(\rho) \simeq e^{2 \gamma \rho} \quad \text { like this }
$$

So,

$$
R(\rho) \cong \rho^{l} e^{-\gamma \rho} e^{2 \gamma \rho}=\rho^{l} e^{\gamma \rho}
$$

that grows
To get a well behaved as $\varphi \rightarrow \infty$!
$R(\rho)$, j must terminate
(like w) Legendre Polys)

Assume a Ümax such that,

$$
\partial \partial\left(j_{\text {max }}+l+1\right)-2=0 \quad\left(\begin{array}{c}
\left(\begin{array}{c}
\text { nunurator of } \\
\text { recurrence } \\
\text { relationship }
\end{array}\right.
\end{array}\right)
$$

max, l aneintegers
so
Unax $+l+1$ is an integer, n

$$
n \equiv j_{\max }+l+1
$$

Principal Quantum Number, n j and l start@ 0 so

$$
n=1,2,3, \ldots \infty
$$

$$
2 \gamma n-2=0 \text { so } \int \gamma=1 / n
$$

energy is quantized (byn!)f

Energy Quantization
Wick $\gamma=1 / n$ we get,

$$
-\gamma^{2}=-\frac{1}{n^{2}}=\frac{E}{\hbar^{2} / 2 \mu a^{2}}=\frac{E}{\frac{\hbar^{2}}{2 \mu}}\left(\frac{4 \pi \pi_{0} \hbar^{2}}{\mu Z e^{2}}\right)^{2}
$$

So that,

$$
E_{n}=-\frac{1}{2 n^{2}}\left(\frac{z e^{2}}{4 \pi \varepsilon_{0}}\right)^{2} \frac{\mu}{\hbar^{2}} \quad n=1,2,3, \ldots
$$

For a given n,

$$
l=n-j \max -1
$$

And thus we have 3 quant om numbers

$$
\begin{aligned}
& n=1,2,3, \ldots, \infty \\
& l=0,1,2, \ldots, n-1 \\
& m=-l,-l+1, \ldots, 0, l-1, l
\end{aligned}
$$

mag. quantum

