The Solution we have sought thus far is, (1)

$$
Y(\theta, \phi)=\Theta(\theta) \Phi(\phi)
$$

We have found,

$$
\Theta(\theta)=(-1)^{m} \frac{(2 l+1)}{2} \frac{(l-m)!}{(l+m)!} P_{l}^{m}(\cos \theta), m \geq 0
$$

and

$$
\Phi(\phi)=\frac{1}{\sqrt{2 \pi}} e^{i m \phi}
$$

The appropriately normalized product gives,

$$
\gamma_{l}^{m}(\theta, \phi)=(-1)^{(m+\operatorname{lm} / 2)} \sqrt{\frac{(2 l+1)(l-|m|)!}{4 \pi(l+\ln 1)!}} P_{l}^{m}(\cos \theta) e^{i m \phi}
$$

where $l=0,1,2,3, \ldots$ and $m=-l,-l+1, \ldots, l-1, l$
our sigh choice is convential ondgius,

$$
Y_{l}^{-m}(\theta, \phi)=(-1)^{m} Y_{l}^{m *}(\theta, \phi)
$$

These ane the Spherical Harmonics
and they ane position representations of angular nomentom eigenstates.

$$
|l m\rangle \stackrel{\circ}{=} Y_{l}^{m}(\theta, \phi)
$$

They are tabulated online and in QM books, (2)

$$
\begin{array}{lll}
\frac{l}{0} & \frac{m}{0} & \frac{Y_{1}^{m}}{Y_{0}^{0}}=\frac{1}{\sqrt{4 \pi}} \\
1 & 0 & Y_{1}^{0}=\sqrt{\frac{3}{4 \pi}} \cos \theta \\
& Y_{1}^{\# 1}=\mp \sqrt{\frac{3}{8 \pi}} \sin \theta e^{ \pm i \phi}
\end{array}
$$

Properties of the Spprevical Harmonics
(1) They are orthonormal on che unit sphere

$$
\left\langle\ell_{1} m_{1} \mid \ell_{2} m_{2}\right\rangle=\int_{0}^{2 \pi} \int_{0}^{\pi} V_{\ell_{1}}^{m_{1}^{*}} Y_{\ell_{2}}^{m_{2}} \sin \theta d \theta d \phi=\delta_{l_{1} l_{2}} \delta_{m_{1} m_{2}}
$$

let $d \Omega=\sin \theta d \theta d \phi$ (solid angle)

$$
\int Y_{l_{1}}^{\mu_{1}^{*}} Y_{l_{2}}^{\mu_{2}} d \Omega=\delta_{l_{1} l_{2}} \delta_{m_{1} m_{2}}
$$

(2) they form a complete basis give a smooth $\psi(\theta, \phi)$,
the Laplace

$$
\psi(\theta, \phi)=\sum_{l=0}^{\infty} \sum_{m=-l}^{l} C_{l m} Y_{l}^{m}(\theta, \phi)
$$ series

Where coeffs $C_{l m}$ are found via projection,

$$
\langle\operatorname{lm} \mid \psi\rangle=c_{l m}=\int_{0}^{2 \pi} \int_{0}^{\pi} Y_{l}^{m^{*}}(\theta, \phi) \psi(\theta, \phi) \sin \theta d \theta d \phi
$$

(3) how Y transforms under parity $\vec{r} \rightarrow-\vec{r}$ depends on \& (angular momentum)

$$
Y_{l}^{m}(\pi-\theta, \phi+\pi)=(-1)^{l} Y_{l}^{m}(\theta, \phi)
$$

(4) They ane eigenstates of $H, L^{2}, d L_{z}$

$$
\begin{aligned}
& H Y_{l}^{m}=\frac{\hbar^{2}}{2 \pm} l(l+1) Y_{l}^{m} \\
& L^{2} Y_{l}^{m}=l(l+1) \hbar^{2} Y_{l}^{m} \\
& L_{z} Y_{l}^{m}=m \hbar Y_{l}^{m}
\end{aligned}
$$

(5) They exhibit degeneracy.
e.g. $E=\frac{\hbar^{2}}{2 I} l(l+1)$ is $2 l+1$ degenerate (for each m).
Thus we must sum over all degenerate states.

$$
P_{E_{l}}=\sum_{m=-l}^{l}|\langle l m \mid \psi\rangle|^{2} \quad \text { pw b of } E_{l}
$$

or for L_{z} all $l \geq m$ ane possible

$$
P_{L_{z}=m \hbar}=\sum_{l=m}^{\infty}|\langle\operatorname{lm} \mid \psi\rangle|^{2}
$$

