
 

So far we have developed the general

eigenvalue egu for a centralpotential

then we explored the solution in a

limited case where hero a 0 00

We will now continue our exploration with
r ro but 0 is free this is the

partite on a sphere
o

That eigenvalueequis now
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This is just the position representation of

Hsphere IE Ele

As we have earlier we limitourselves

to rf ro o d Y1901
and set
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we also identify Mro2 I the
Moment of inertia for classical particle
with mass µ Thus we simplify
our analysis to

i
IIFsiiofolsiuo.to tsiiToIIIYlgoD EYlos0

i

E operator
2

Y EY

we had separated our solution earlier

from
41910 6 Ello

before L 410,4 Ah2YlO0

thusweexpect A LUH and A FEE
80 E is quantized

When we pluggedin f OI into our

differential equ we obtained
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Our solution to the particle on a ring
gave us Bem 2 so that

µsrodolanoFoI 7I OioI AH

we must nowsolve this differential gu
9

This is done in manybooks including McIntyre As
we do not needto derive this more than once we

will only highlight parts of that solution

We introduce 2 Cosa and PIZ Co

this gives sino di_zT
Thus our boxed ega above can be rewritten
as the associated LegendreEquation
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if we take the case m o weobtain

Legendre's Equation
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Note there are singularities at 2 II or

0 0 it the poles

Building a Series Solution

the approach we will take to
solve Legendre's equation will use a

series solution That is we propose

we can find a solution of the form
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and we plug it in to find conditions on au

Note that fPz Enanz
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and dpIzz Eun Danz
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subbing into the last boxedequ above yields
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Note

ouch 1 an't outface't ilonanE't afoot
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the first two terms still vanish n 2 th I so
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now zh

a
an at2 htt aanIn 1 Zann Aann z O

holds for any 2 ta so the
coefficients must vanish
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So
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this recurrence relationship tells us howto

get coetfs given ao or a

effs
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Thus our series solution is
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dot ta Z tazz 1 Where we can

write everything in terms of aoda
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But we have a convergence problem of

h D in general
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But If we have a stronger condition

on the limit of n we mightbeok

We require so hmm such that
the recurrence relation terminates

it A_nmaxlumaxtl then
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We already expect A elett givin
Y ATTY and Eleni eleHthYear

so this is consistent with prior work
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LegendrePolynomials

The special values of A LHtt give
rise to polynomials of degree L Pelz
the Legendre Polynomials

We can calculate them via
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Pdz zl3E 1 etc

tegednePolynomials are orthogonal
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Now that we know A LUH we

can explore cases where M 0

Going back to our original diff E Q forPCH
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This differential eqa is wellstudied and
its solutions are the associated Legeadne
functions
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Note date
Izzi it takes the Hutt derivative

of a polynomial of order l
if m l then ante

e 24 1 l O

so

Mr l IH 0 l l l

iinegersnly
These associated Legendrepolynomials are

orthogonal
pemczypgmade iSeq



Ourition
Originally we wrote E coso so the

eigenstates determined from Pentz are

10emtd C ymHIIHY.pemccosd.msHeIm
and

Imco film into miso

with the orthogonality relationship
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