So far, we have developed the genera/ (1) eigenvalue equ for a central potential: then we explored the solution in a limited case (where $r=r_{0} \& \theta=\theta_{0}$).

We will now continue our exploration with $r=r_{0}$, but θ is free. this is the "particle on a sphere"

That eigenvalue eqn is now,

$$
\begin{gathered}
-\frac{-\hbar^{2}}{2 \mu r_{0}^{2}}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right) \psi \\
+V\left(r_{0}\right) \psi=E \psi
\end{gathered}
$$

This is just the position representation of

$$
H_{\text {sphere }}|E\rangle=E|E\rangle
$$

As we have earlier we limit ourselves to $\psi\left(r_{0}, \theta, \phi\right)=V(\theta, \phi)$
and set

$$
V\left(v_{0}\right)=0
$$

We alto identify $\mu r_{0}^{2}=I$ the moment of inertia for classical particle with mass μ. Thus we simplify
our analysis to,

$$
-\frac{\hbar^{2}}{2 I}\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}}\right) Y(\theta, \phi)=E Y(\theta, \phi)
$$

${ }^{\rightarrow} L^{2}$ operator

$$
\frac{L^{2}}{2 I} Y=E Y
$$

We had separated our solution earlier,

$$
Y(\theta, \phi)=\Theta(\theta) \Phi(\phi)
$$

from
before $L^{2} Y(\theta, \phi)=A h^{2} Y(\theta, \phi)$
thus we expect $A=l(l+1)$ and $A=\frac{2 F}{\hbar^{2}} E$
So E is quantized!
When we plugged in $Y=\Theta \Phi$ into our differential equ, we obtained,

$$
\begin{gathered}
\left(\frac{1}{\sin \theta} \frac{d}{d \theta}\left(\sin \theta \frac{d}{d \theta}\right)-B \frac{1}{\sin ^{2} \theta}\right) \Theta(\theta)=-A \Theta(\theta) \\
\frac{d^{2} \Phi(b)}{d \phi^{2}}=-B \Phi(\phi)
\end{gathered}
$$

Our solution to the particle on a ring gave us $B=m^{2}$ so that

$$
\left(\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)-\frac{m^{2}}{\sin ^{2} \theta}\right)(H(\theta)=-A \Theta(\theta)
$$

We must now solve this diffenutial equ. F (This is done in many books including $M \leq$ Jntyre. As we donot ned to derive this more than once, we will only highlight parts of that solution)
We introduce $z=\cos \theta$ and $P(z)=\Theta(\theta)$. this gives $\sin \theta=\sqrt{1-z^{2}}$

Thus our boxed equ above can be rewritten us the "associated Legendre Equation",

$$
\left[\left(1-z^{2}\right) \frac{d}{d z^{2}}-2 z \frac{d}{d z}+A-\frac{m^{2}}{\left(1-z^{2}\right)}\right] P(z)=0
$$

if we take the case $m=0$, we obtain "Legendre's Equation"

$$
\begin{array}{r}
\left(\left(1-z^{2}\right) \frac{d^{2}}{d z^{2}}-2 z \frac{d}{d z}+A\right) P(z)=0 \\
\left(\frac{d^{2}}{d z^{2}}-\frac{2 z}{\left(1-z^{2}\right)} \frac{d}{d z}+\frac{A}{\left(1-z^{2}\right)}\right) P(z)=0
\end{array}
$$

Note: there are singularities at $z= \pm 1$ or 4
$\theta=0, \pi$ (the poles)
Building a Series Solution
The approach we will take to solve Lequactre's equation will use a series solution. That is we propose we can find a solution of the form,

$$
P(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

and we plugit in to find conditions on a_{n}.
Note that: $\frac{d P}{d z}=\sum_{n=0}^{\infty} n a_{n} z^{(n-1)}$
and

$$
\frac{d^{2} P}{d z^{2}}=\sum_{n=0}^{\infty} n(n-1) a_{n} z^{(n-2)}
$$

Subbing into the last boxed equ above yields,

$$
\begin{aligned}
& \sum_{n=0}^{\infty} n(n-1) a_{n} z^{(n-2)}-z^{2} \sum_{n=0}^{\infty} n(n-1) a_{n} z^{(n-2)} \\
& -2 z \sum_{n=0}^{\infty} n a_{n} z^{(n-1)}+A \sum_{n=0}^{\infty} a_{n} z^{n}=0
\end{aligned}
$$

which gives,

$$
\sum_{n=0}^{\infty} n(n-1) a_{n} z^{(n-2)}-\sum_{n=0}^{\infty} n(n-1) a_{n} z^{n}-2 \sum_{n=0}^{\infty} n a_{n} z^{n}+A \sum_{n=0}^{\infty} a_{n} z^{n}=0
$$

Note:

$$
\begin{array}{cc}
\sum_{n=0}^{\infty} n(n-1) a_{n} z^{(n-2)}=\underbrace{z^{-2}}_{\substack{n=0 \\
0(-1) a_{0}}}+\underbrace{1(0) a_{1} z^{-1}}_{\substack{n=1 \\
=0}}+\underbrace{2(1) a_{2} z^{0}}_{\substack{n=2 \\
\neq 0}}+\cdots
\end{array}
$$

Thus we make an index shift, $n \rightarrow n+2$

$$
\sum_{n=0}^{\infty} n(n-1) a_{n} z^{(n-2)}=\sum_{n=-2}^{\infty}(n+2)(n+1) a_{n+2} z^{n}
$$

The first tow terms still vanish $n=-2+n=-1$, so

$$
\sum_{n=0}^{\infty}(n+2)(n+1) a_{n+2} z^{n}=\sum_{n=0}^{\infty} n(n-1) a_{n} z^{n-2}
$$

ok so back to the boxed equ, all terms ane now z^{h},

$$
\sum_{n=0}^{\infty}\left(a_{n+2}(n+2)(n+1)-a_{n} n(n-1)-2 a_{n} n+A a_{n} n\right) z^{n}=0
$$

holds for any z tu so, the coefficients must vanish!

$$
a_{n+2}(n+2)(n+1)-a_{n} n(n-1)-2 a_{n} n+A a_{n} n=0
$$

So that,

$$
a_{n+2}=\frac{n(n+1)-A}{(n+2)(n+1)} a_{n}
$$

this recurrence relationship tells us how to get coeffs given a_{0} or a_{1}.
Even Coif's

$$
\begin{aligned}
& a_{2}=\frac{0(0+1)-A}{(0+2)(0+1)} a_{0}=-\frac{A}{2} a_{0} \\
& a_{4}=\frac{2(2+1)-A}{(2+2)(2+1)} a_{2}=\frac{6-A}{12} a_{2}=-\frac{(6-A)(A)}{24} a_{0}
\end{aligned}
$$

Odd chef's

$$
\begin{aligned}
& a_{3}=\frac{1(1+1)-A}{(1+2)(1+1)} a_{1}=\frac{2-A}{6} a_{1} \\
& a_{5}=\frac{3(3+1)-A}{(3+2)(3+1)} a_{3}=\frac{12-A}{20} a_{3}=\frac{(12-A)(2-A)}{120} a_{1}
\end{aligned}
$$

Thus our series solution is,

$$
P(z)=\sum_{n=0}^{\infty} a_{n} z^{n}
$$

$=a_{0} z^{0}+a_{1} z^{1}+a_{2} z^{2}+\ldots$ where we can write every thing in terms of $a_{0} d a_{1}$,

$$
P(z)=a_{0}\left(z^{0}-\frac{A}{2} z^{2}+\cdots\right)+a_{1}\left(z^{1}+\frac{2-A}{6} z^{3}+\ldots\right)
$$

But we have a convergence problem of 7 $n \rightarrow \infty$ in general,

$$
\lim _{n \rightarrow \infty}\left(\frac{a_{n+2}}{a_{n}}=\frac{n(n+1)-A}{(n+2)(n+1)}\right) \simeq 1
$$

But! If we have a stronger condition on the limit of n, we might be ok.
We require so $n_{\text {max }}$ such that the recurrence relation terminates

$$
\begin{aligned}
\text { if } A & =n_{\text {max }}\left(n_{\text {max }}+1\right) \quad \text { then, } \\
a_{n_{\text {max }}+2} & =\frac{0}{\left(n_{\text {max }}+2\right)\left(n_{\text {max }}+1\right)} a_{n_{\text {max }}}=0
\end{aligned}
$$

We already expect $A=\ell(\ell+1)$ gium

$$
l^{2} Y=A \hbar^{2} Y \quad \text { and } \quad l^{2}|l m\rangle=l(l+1) \hbar^{2}|l m\rangle
$$

So this is consistent with prior work with $l=0,1,2,3 \ldots$

Legendre Poly nomials
The special values of $A=\ell(l+1)$ give vise to polynomials of degree $l, P_{l}(z)$
the "Legendre Polynomials"
We can calculate them via,

$$
\begin{array}{ll}
P_{l}(z)=\frac{1}{2^{l} l!} \frac{d^{l}}{d z^{l}}\left(z^{2}-1\right)^{l} \begin{array}{c}
\text { Rodriquez } \\
\text { Formula }
\end{array} \\
P_{0}(z)=1 & P_{3}(z)=\frac{1}{2}\left(5 z^{3}-3 z\right) \\
P_{1}(z)=z & P_{4}(z)=\frac{1}{8}\left(35 z^{4}-30 z^{2}+3\right) \\
P_{2}(z)=\frac{1}{2}\left(3 z^{2}-1\right) & \text { etc. }
\end{array}
$$

regedure folynomials are orthogonal!

$$
\int_{-1}^{1} P_{k}^{*}(z) P_{l}(z) d z=\frac{2}{2 l+1} \delta_{k l}
$$

Now that we know $A=l(l+1)$ we Can explore cases where $m \neq 0$ fling back to our original diff.E.Q. for $P(z)$,

$$
\left(\left(1-z^{2}\right) \frac{d^{2}}{d z^{2}}-2 z \frac{d}{d z}+l(l+1)-\frac{m^{2}}{\left(1-z^{2}\right)}\right) P(z)=0
$$

This differential eqn is well-studied and its solutions ane the "associated Legendre functions."

$$
\begin{aligned}
& P_{l}^{m}(z)=P_{l}^{-m}(z)=\left(1-z^{2}\right)^{m / 2} \frac{d^{m}}{d z^{m}} P_{l}(z) \\
& =\frac{1}{2^{l} l!}\left(1-z^{2}\right)^{m / 2} \frac{d^{m+l}}{d z^{m+l}}\left(z^{2}-1\right)^{l}
\end{aligned}
$$

Note: $\frac{d^{m+l}}{d z^{n+l}}\left(z^{2}+1\right)^{l}$ takes the $(m+l)$ derivative of a polynomial of order l
if $m>l$ then $\frac{d^{m+l}}{d z^{m+l}}\left(z^{2}+1\right)^{l}=0$
So

$$
m=-l,-l+1, \ldots, 0, \ldots, l-1, l
$$

that is $|m| \leq l$ integers only
These associated Legendre polynomials ane orthogonal:

$$
\int_{-1}^{1} P_{l}^{m}(z) P_{q}^{m}(z) d z=\frac{2}{2 l+1} \frac{(l+m)!}{(l-m)!} \delta_{l q}
$$

Our Θ solution
Originally we wrote $z=\cos \theta$ so the (4) eigenstades determined from $P_{l}^{m}(z)$ ore,

$$
(H)_{l}^{m}(\theta)=(-1)^{m} \frac{(2 l+1)}{2} \frac{(l-m)!}{(l+m)!} p_{l}^{m}(\cos \theta), m \geq 0
$$

and

$$
(H)_{l}^{-m}(\theta)=(-1)^{m} H_{l}^{m}(\theta), m \geq 0
$$

with the orthogonality relationship,

$$
\int_{0}^{\pi}(H)_{l}^{m}(\theta)(H)_{q}^{m}(\theta) \sin \theta d \theta=\delta_{l q}
$$

and $P_{l}^{m}(\cos \theta)$ is,

$$
\begin{array}{ll}
P_{0}^{0}=1 & \rho_{2}^{0}=\frac{1}{2}\left(3 \cos ^{2} \theta-1\right) \\
\rho_{1}^{0}=\cos \theta & \rho_{2}^{1}=3 \sin \theta \cos \theta \\
\rho_{1}^{\prime}=\sin \theta & \rho_{2}^{2}=3 \sin ^{2} \theta
\end{array}
$$

