We can begin our formal exploration of our separable solutions by considering a particle boar to a ring.

x \$ only degree of freedom (ID problem.)
$B / C \quad \theta=\theta_{0}+r=r_{0}$,

$$
-\frac{\hbar^{2}}{2 \mu} \frac{1}{r_{0}^{2}} \frac{d^{2} \psi}{d \phi^{2}}+V\left(r_{0}\right) \psi=E \psi
$$

We can set $V\left(r_{0}\right)=0$ for this setup;

$$
\psi(r, \theta, \phi)=\Phi(\phi) \text { only ID! }
$$

$$
-\frac{\hbar^{2}}{2 \mu r_{0}^{2}} \frac{d^{2} \Phi}{d \phi^{2}}=E \Phi
$$

$$
\frac{-\hbar^{2}}{2 I} \frac{d^{2} \Phi}{d \phi^{2}}=E \Phi
$$

Nate that $\mu r_{0}{ }^{2}=I$ moment of inertia of particle

In our separable solution, we found, (2)

$$
\frac{d^{2} \Phi}{d \phi^{2}}=-B \Phi \quad \text { so } B=\frac{2 I}{\hbar^{2}} E
$$

In position space, $L_{z} \doteq-i \hbar \frac{d}{d \phi}$ so that,

$$
L_{z}^{2}=-\hbar^{2} \frac{d^{2}}{d \phi^{2}}
$$

And thus,
this tracks with Hoys,

$$
\frac{L_{z}^{2}}{2 I} \Phi=E \Phi
$$

$$
H_{s y s}=T=L_{z}^{2} / 2 I
$$

for this system.
Thus, eigenstates of L_{z} ane also energy eigenstates $\left(V\left(0_{0}\right)=0\right)$

$$
\begin{aligned}
& L_{z}\left|\ell m_{l}\right\rangle=m_{l} \hbar\left|\ell m_{l}\right\rangle \\
& L_{z}^{2}\left|\ell m_{l}\right\rangle=m_{l}^{2} \hbar^{2}\left|\ell m_{l}\right\rangle
\end{aligned}
$$

Thus,

$$
H_{s y s}\left|l_{m_{l}}\right\rangle=\frac{L_{z}^{2}}{2 I}\left|l_{m_{l}}\right\rangle=\frac{m_{l}^{2} \hbar^{2}}{2 I}\left|l_{m_{l}}\right\rangle
$$

or

$$
E=\frac{m_{l}^{2} \hbar^{2}}{2 I} \text { where } I=\mu r_{0}^{2}
$$

This is great! We found eigenstutes of H o the associated energies!
But, what about the position representation?
Position Rep.

$$
\frac{d^{2} \Phi}{d \phi^{2}}=-B \Phi \Rightarrow \Phi(\phi)=N_{e}{ }^{ \pm i \sqrt{B} \phi}
$$

the ring problem requires $\Phi(\phi)=\Phi(\phi+2 \pi)$
$\Rightarrow \Phi$ must he single valued.
So \sqrt{B} must be real (periodic solution)
Finally, to match the periodicity \sqrt{B} most he an integer,

$$
\sqrt{B}=m=0, \pm 1, \pm 2, \ldots
$$

So,

$$
\Phi(\phi)=N e^{i m \phi} \quad m=0, \pm 1, \pm 2, \ldots
$$

Let's check expectations,

$$
L_{z}|l m\rangle=m \hbar|l m\rangle
$$

$L_{z}=-i \hbar \frac{d}{d \phi}$ so that

$$
\begin{aligned}
L_{z} \Phi(\phi) & =-i \hbar \frac{d}{d \phi}\left(N e^{i m \phi}\right) \\
& =-i \hbar(i m) N e^{i m \phi}=m \hbar N e^{i m \phi} \\
L_{z} \Phi(\phi) & =m \hbar \Phi(\phi) \quad V
\end{aligned}
$$

Let's normalize $\Phi(\phi)$,

$$
\begin{aligned}
& \langle\Phi \mid \Phi\rangle=1 \\
& \doteq \int_{0}^{2 \pi} \Phi^{*} \Phi d \phi=|N|^{2} \int_{0}^{2 \pi} d \phi=2 \pi|N|^{2}
\end{aligned}
$$

$$
N=\frac{1}{\sqrt{2 \pi}} \therefore \Phi(\phi)=\frac{1}{\sqrt{2 \pi}} e^{i m \phi}
$$

These states are orthogonal,

$$
\langle k \mid m\rangle=\delta_{k m}=\int_{0}^{2 \pi} \Phi_{k}(\phi) \Phi_{m}(\phi) d \phi
$$

