Wave packets that we have begin to ()
construct gives us new insight into the
uncertainly principle.

$$\Psi(x_1+) = \int_{2\pi\pi}^{1} \int_{\pi}^{\infty} \frac{1}{\phi(p)} e^{ip(x-pt/2m)/\pi} dp$$

For a given distribution of Manuentum
eigenstates, $\phi(p) \in$ momentum space wavefunction,
we might find some distribution theat
can be characterised by some extent, Sp
For example a Gravesian distribution,
 $\phi(p) = \int_{\pi}^{1} \frac{1}{2\Delta p} \int_{\pi}^{\infty} \frac{1}{2\Delta p} \int_{\pi}^{\pi} \frac{1}{2\Delta$

with some physical spread (e(4(x)) WALLAN X

The Mathematrical relationship that connects BX a Ap is the Fairier (or inverse) transform of the momentum space wome traction (or the spatial wave function).

Homever, the theisenberg Uncertanity principle can help produce a lower limit on these uncertainties u/s much calculation.

General deisenberg U.P. $\Delta A \Delta B = \frac{1}{2} | \langle [A, B] \rangle |$

It can be shown that
$$\hat{x} d\hat{p}$$

do not commute,
 $[\hat{x}, \hat{p}] = i\hbar$ thus,
 $[\hat{x}, \hat{p}] = i\hbar$ thus,
 $[\hat{x}, \hat{p}] = \frac{i}{2} |\langle [\hat{x}, \hat{p}] \rangle| = \frac{i}{2} |\langle i\hbar \rangle|$
 $[\hat{a} \times \Delta p \ge \frac{\hbar}{2}]$
Him does this relationship Manifest in
our Names?
In two ways,
(1) waves with broad (narow) spatial extents will
have narrow (broad) momentum extents.
 $[M] = M = x$
 $[M] = M = x$

(2) in how the wave packet evolves (4)
in time.
$$\Rightarrow$$
 it will spread out
e.g. in the derivation for the
Gaussian beam, we can show,
 $\Delta x = \frac{1}{2\beta} \sqrt{1 + \left(\frac{2B^{2}t}{MTh}\right)^{2}} \Delta p = \beta$
where p is the gaussian spread in normality
Thus,
 $\Delta x \Delta p = \frac{1}{2} \int \frac{1}{1 + \left(\frac{2B^{2}t}{MTh}\right)^{2}} t > 0$ $\Delta x \Delta p > \frac{1}{2} t > 0$ $\Delta x \Delta p > \frac{1}{2} t > 0$
 $Example 1: A single Momentum statehel's consider a single version haveeigenstate to see how $\Delta x \Delta p \ge \frac{1}{2} t > 0$
 $A single Momentum eigenstate is apune sinusoidal state in positionspace.$$

$$\begin{array}{c} \begin{array}{c} \begin{array}{c} (x) & p_{0} \end{array} & = \int_{\mathcal{B}} f(x) = \int_{2\pi \cdot K}^{1} e^{i f_{0} \cdot x/\hbar} \end{array} \end{array} \end{array}$$

$$\begin{array}{c} \text{Note: here we have spatial representation} \\ \text{Of a pure sinusoidal function given} \\ \text{a particular momentum} \\ \text{fo} \end{array}$$

$$\begin{array}{c} \text{Re(P_{p_{0}}(x))} \\ \end{array} \end{array} \qquad \begin{array}{c} \text{Tufmite} \\ \text{extent} \end{array}$$

This integral form is precisely (6)
the one for Dirac normalization,

$$\langle p|p \rangle = \delta(p - p_0)$$
 $P_{p}(p)$ colopse
 $p_{p}(p) = \delta(p - p_0)$ $P_{p}(p)$ $P_{p}(p)$ $P_{p}(p) = \delta(p - p_0)$
There spatial extent \iff unique p
Example 2: Particle state
A particle state would have a pefectly
identifiable location, say x₀. Hows
 $\langle x| x_0 \rangle = P_{x_0}(x) = \delta(x - x_0)$ is the
position representation of this particle's
state.
Note: $\hat{x}|x_0 \rangle = x_0 \langle x_0 \rangle$ $P_{x_0}(x)$ $P_{x_0}(x)$
 $\hat{x} \delta(x - x_0) = x_0 \delta(x - x_0)$

(7) So the Fourier transform of Px, (x) Will give us the monuntum representation, $\phi_{\chi_0}(p) = \frac{1}{\sqrt{2\pi\hbar}} \int \frac{\varphi}{\varphi_{\chi_0}(x)} e^{-ipx/\hbar} dx$ $= \int \frac{1}{\sqrt{2\pi\hbar}} \int \frac{1}{\sqrt{2\pi\hbar}} \int \frac{1}{\sqrt{2\pi\hbar}} \int \frac{1}{\sqrt{2\pi\hbar}} \frac{1}{\sqrt{2\pi}} \int \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \int \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \int \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \int \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \int \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2\pi}} \int \frac{1}{\sqrt{2\pi}} \frac{$ in $\phi_{\mathbf{X}_{p}}(\rho)$ $\mathcal{R}(\mathfrak{P}_{\mathbf{x}_{s}}(\mathfrak{P}))$ Intracte
 extent ! highly localized spatial extent extent