Wavepackets that we have begun to construct gives us new insight into the uncertainty principle.

$$
\psi(x,+)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} \phi(\rho) e^{i \rho(x-p t / 2 m) / \hbar} d \rho
$$

For a given distribution of Momentum eigenstates, $\phi(p) \Leftarrow$ momentum space wavetunction, we might find some distinbution that can be characterized by some extent, Sp For example a Gaussian distrizution,

introduces some uncertainty in the measure of $p, \Delta p \sim \delta_{p}$ This Δp leads to some $\Delta X \rightarrow$ a wane packet
with some physical spread

The Mathematical relationship that connects $\Delta X \propto \Delta P$ is the Fourier (or inverse) transform of the monention space wove turection (or the spatial wave function).
However, the Heisenberg Uncertanity principle can help produce a lower limit on these uncertainties who much calculation.

General Heisenberg U.P.

$$
\Delta A \Delta B \geq \frac{1}{2}|\langle[A, B]\rangle|
$$

It can be shown that $\hat{x} d \hat{\rho}$ do not commute,
$[\hat{x}, \tilde{p}]=i \hbar \quad$ thus,

$$
\begin{gathered}
\Delta x \Delta p \geq \frac{1}{2}|\langle[\hat{x}, \tilde{\rho}]\rangle|=\frac{1}{2}|\langle i \hbar\rangle| \\
\Delta x \Delta p \geq \hbar / 2
\end{gathered}
$$

How does this relationship manifest in our waves?

In two ways,
(1) waves with brood (narrow) spatial extents will have narrow (broad) momentum extents.

(2) in how the wave packet evolves in time. \Rightarrow it will spread out ecg. in the derivation for the Gaussian beam, we can show,

$$
\Delta x=\frac{\hbar}{2 \beta} \sqrt{1+\left(\frac{2 \beta^{2} t}{m \hbar}\right)^{2}} \quad \Delta p=\beta
$$

where β is the gaussian spread in monucta

$$
\begin{aligned}
& \text { Thus, } \\
& \Delta x \Delta p=\frac{\hbar}{2} \sqrt{1+\left(\frac{2 \beta^{2} t}{m \hbar}\right)^{2}} \\
& t=0 \quad \Delta x \Delta p=\hbar / 2 \quad t>0 \quad \Delta x \Delta p>\pi / 2
\end{aligned}
$$

Example 1: A single momentum state Lets consider a single momentum eigenstate to see how $\Delta x \Delta p \geq \hbar / 2$ plays out.
A single momentum eigenstate is a pure sinusoidal state in position space.

$$
\begin{equation*}
\left\langle x \mid p_{0}\right\rangle=\varphi_{p_{0}}(x)=\frac{1}{\sqrt{2 \pi \hbar}} e^{i p_{0} x / \hbar} \tag{5}
\end{equation*}
$$

Note: here we have spatial ne presentation of a pure sinusoidal function given a particular momentumej fo

Let's use the Fourier transform to find the representation in moments space.

$$
\begin{aligned}
\phi_{p_{0}}(p) & =\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} \varphi_{p_{0}}(x) e^{-i p x / \hbar} d x \\
& =\frac{1}{2 \pi \hbar} \int_{-\infty}^{\infty} e^{+i p_{0} x / \hbar} e^{-i p x / \hbar} d x \\
& =\frac{1}{2 \pi \hbar} \int_{-\infty}^{\infty} e^{-i\left(\rho-p_{0}\right) x / \hbar} d x
\end{aligned}
$$

This integral form is precisely the one for Dirac normalization,

So,

$$
\begin{aligned}
& \left\langle p \mid p_{j}\right\rangle=\delta\left(p-p_{0}\right) \\
& \phi_{p_{0}}(p)=\delta\left(p-p_{j}\right)
\end{aligned}
$$

Infinite spatial extent \rightleftharpoons unique ρ
Example 2: Particle state
A particle state would have a perfectly identifiable location, say x_{0}. Thus $\left\langle x \mid x_{0}\right\rangle=\varphi_{x_{0}}(x)=\delta\left(x-x_{0}\right)$ is the position representation of this particle's state.
Note: $\tilde{X}\left|x_{0}\right\rangle=x_{0}\left|x_{0}\right\rangle \quad \varphi_{x_{0}}(x) \mid$

$$
\tilde{x} \delta\left(x-x_{0}\right)=x_{0} \delta\left(x-x_{0}\right)
$$

ane the eigenvalue equs

So the Fourier transform of $\varphi_{x_{0}}(x)$
will give US the momentum representation,

$$
\begin{gathered}
\phi_{x_{0}}(\rho)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} \varphi_{x_{0}}^{\infty}(x) e^{-i p x / \hbar} d x \\
=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} \delta\left(x-x_{0}\right) e^{-i p x / \hbar} d x \\
\phi_{x_{0}}(\rho)=\frac{1}{\sqrt{2 \pi \hbar}} e^{-i p x_{0} / \hbar} \quad \begin{array}{l}
\text { recall that } \rho \\
\text { is the variable } \\
\text { in } \phi_{x_{0}}(\rho)
\end{array} \\
R\left(\phi_{x_{0}}(\rho)\right)
\end{gathered}
$$

highly localized spatial extent
 infinite Monition extent.

