
 

Wavepackets that we have begun to

construct gives us new insight into the

uncertainty principle
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For a given distribution of momentum
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we might find some distribution that

can be characterized by some extent Sp

For example a Gaussian distribution
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introduces some uncertainty in

the measure of p Dp Sp

This Dp leads to some DX a wavepacket



with some physicalspread
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TheMathematical relationship that connects

DX aBp is the Fourier or inverse transform

of the momentumspace wavefunction or

the spatial wave function

However the Heisenberg Uncertunity
principle can help produce a lowerlimit

on these uncertainties w o much

calculationGeneral Heisenberg UP
IAADB.EE

fCAiB



It can be shown that Idf
donot commute
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How does this relationship manifest in

airwaves
In two ways
1 waves withbroad narrow spatial extents will
haw narIw broad momentumextents
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2 in how the wavepacket evolves

in time it will spread out

eg in the derivation for the
Gaussian beam we can show
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whew p is the gaussian spreadin momenta

Thus

DXAp LI f j
t o osxdp ihlztsodxdp.it 2

Example'I A single momentum state

het's consider a single momentum

eigenstate to see how Axap2h42
plays out

A single momentum eigenstate is a

pure sinusoidal state inpositron
space
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Note here we have spatial representation

Of a pure sinusoidal function given
a particular momentum po
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Lets use the Fourier transformto

find the representation in momentum

space
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This integral form is precisely

the one fr Dirac normalization
collapse

so
CplPo Scppo hold
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Example2 particle slate

A particle state would have a perfectly

identifiable location say Xo this

1 1 07 41 1 8 x Xo is the

position representation of this particle's
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So the Fouriertransform of 4xolx

will give us the momentum representative

dx.CM zhff qµ e Hkd

athf.IS o e iPHkdy

recall that p
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is the variable
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