Now that we have seen how we can begin to constwat wave packets using a 3 eigenstate wavefunction, we will generalize to a distribution of ejenstates given by $\phi(p)$. Home $\phi(p)$ could be anything,

Gaussian

etc... In these notes we will focus on Gaussian because: (a) they ane common in expennents and (b) they mathematical tractable.
We start by writing $\psi(x, 0)$ with the knowledge that $\phi(\rho)$ is te fined from $-\infty$

$$
\psi(x, 0)=\int_{-\infty}^{\infty} \underbrace{\infty}_{\text {chef for a given } p \text {. } p \text {. eigenstates. }} \varphi_{p}(x) d p \begin{array}{l}
\text { We are simply } \\
\text { adding op all } \\
\text { the momentum }
\end{array}^{\text {to }}
$$

$$
\begin{align*}
& \varphi_{p}(x)=\frac{1}{\sqrt{2 \pi \hbar}} e^{i p x / \hbar} \operatorname{per} \text { usual so, } \tag{2}\\
& \psi(x, 0)=\int_{-\infty}^{\infty} \phi(p) \frac{1}{\sqrt{2 \pi \hbar}} e^{i p x / \hbar} d p
\end{align*}
$$

Given that the momentum eigenstates ane also energy eijenstates for a freeparticle with $E_{\rho}=p^{2} / 2 \mathrm{~m}$, time evolution of ψ is quite simple.

$$
\begin{aligned}
& \psi(x, t)=\int_{-\infty}^{\infty} \phi(p) \frac{1}{\sqrt{2 \pi \hbar}} e^{i p x / \hbar} e^{-i E_{p} t / \hbar} d p \\
& \psi(x, t)=\int_{-\infty}^{\infty} \phi(p) \frac{1}{\sqrt{2 \pi \hbar}} e^{i p x / \hbar} e^{-i \frac{p^{2} t}{2 m \hbar} d p}
\end{aligned}
$$

or

$$
\psi(x,+)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} \phi(\rho) e^{i p\left(x-\frac{p}{2 m} t\right) / \hbar} d \rho
$$

time evolution of free particle generalstate * We need a $\phi(p)$ to solve

This eau might look sort of familiar. Earlier, (3) we produced

$$
\psi(x)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} \phi(p) e^{i p x / \hbar} d p
$$

which is the fourier transform of $\phi(p)$.
What we have constructed is the time dependent Fourier transform of $\phi(p)$,

$$
\psi(x, t)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} \phi(p) e^{i p\left(x-\frac{p}{2 m} t\right) / \hbar} d p
$$

Given that the inverse traustorm fum earlier was,

$$
\phi(p)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} \psi(x) e^{-i p x / \hbar} d x
$$

We expect the time dependent inverse transform to he,

$$
\phi(p, t)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} \psi(x, t) e^{-i p\left(x-\frac{p}{2 m} t\right) / \hbar} d x
$$

Example: Gaussian Distributed $\phi(p)$ (4)
Let's assume we have a Gaussian $\phi(\rho)$ that is peaked at p_{0} and has a width that is charaterized by β.
Aproperly normalized momentum space wavefunction, $\phi(p)$, with these attributes is given by,

$$
\phi(p)=\left(\frac{1}{2 \pi \beta^{2}}\right)^{1 / 4} e^{-\left(p-p_{0}\right)^{2} / 4 \beta^{2}}
$$

The probability distribution for this wave function is simply absolute square,

$$
P(p)=|\phi(p)|^{2}=\frac{1}{\beta \sqrt{2 \pi}} e^{-\left(p-p_{0}\right)^{2} / 2 \beta^{2}}
$$

A typical Gaussian is given by $f(z)=\frac{e^{-(z-\mu)^{2} / 2 \sigma^{2}}}{\sigma \sqrt{2 \pi}}$ So we can read off $\mu=\langle p\rangle=p_{0}$ and $\sigma=\Delta p=\beta$
ok Let's get to calculating, we want to 5 take the time dependent Fourier transform of $\phi(p)$,

$$
\begin{aligned}
& \psi(x, t)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty} \phi(p) e^{t i p\left(x-\frac{p}{2 m} t\right) / \hbar} d p \\
& \text { or } \\
& \psi(x, t)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty}\left(\frac{1}{2 \pi \beta^{2}}\right)^{1 / 4} e^{-\left(p-p_{0}\right)^{2} / 2 \beta^{2}} e^{i p x / \hbar} e^{-i \frac{p^{2}}{2 m} t / \hbar} d \rho \\
& \quad \text { Yikes! }
\end{aligned}
$$

Fortunately Gaussian Integrals are "well known", aka compiled online 4 stuff,

$$
\int_{-\infty}^{+\infty} e^{-a^{2} x^{2}+b x} d x=\frac{\sqrt{\pi}}{a} e^{b^{2} / 4 a^{2}}
$$

Given this the first of a number of such complex integrals, lets unpack it. We have a polynomial form $-a^{2} x^{2}+b x$ that we seek. So lets combine all
the exponential above,

$$
e^{\text {blah }} e^{\text {blah }} e^{\text {blah }}=e^{(\text {blah 1+blak2+blak 3) }}
$$

that would give,

$$
-\frac{\left(p-p_{0}\right)^{2}}{2 \beta^{2}}+\frac{i p x}{\hbar}-\frac{i p^{2} t}{2 m \hbar}
$$

let's expand and collect $p^{2}+p$ terms,

$$
\begin{aligned}
& -\frac{\left(p^{2}-2 p p_{0}+p_{0}^{2}\right)}{2 \beta^{2}}+\frac{i x}{\hbar} p-\frac{i t}{2 m \hbar} p^{2} \\
= & -\left(\frac{i t}{2 m \hbar}+\frac{1}{2 \beta^{2}}\right) p^{2}+\left(\frac{p_{0}}{\beta^{2}}+\frac{i x}{\hbar}\right) p-\frac{p_{0}^{2}}{2 \beta^{2}}
\end{aligned}
$$

Notice that these exponents are of the form $-a x^{2}+b x+c$
it we exponentiate we get,

$$
e^{-a x^{2}+b x+c}=e^{c} e^{-a x^{2}+b x}
$$

Constr term! Po is

$$
C=-P_{0}^{2} / 2 \beta^{2}
$$

So with $a=\left(\frac{i t}{2 m \hbar}+\frac{1}{2 \beta^{2}}\right)$ and $b=\left(\frac{p_{0}}{\beta^{2}}+\frac{i x}{\hbar}\right)$
then,

$$
\begin{equation*}
\int_{-\infty}^{\infty} e^{-a p^{2}+b p^{2}} d p=\frac{\sqrt{\pi}}{a} e^{b^{2} / 4 a^{2}} \tag{7}
\end{equation*}
$$

Let's go all the way back,

$$
\psi(x,+)=\frac{1}{\sqrt{2 \pi \hbar}} \int_{-\infty}^{\infty}\left(\frac{1}{2 \pi \beta^{2}}\right)^{1 / 4} e^{-\left(\rho-\rho_{0}\right)^{2} / 2 \beta_{\beta} i p x / \hbar} e^{-i \frac{\rho^{2}}{2 m} t / \hbar} d \rho
$$

We rewrite as,

$$
\begin{aligned}
& \psi(x, t)=\frac{1}{\sqrt{2 \pi \hbar}}\left(\frac{1}{2 \pi \beta^{2}}\right)^{1 / 4} \int_{-\infty}^{\infty} e^{c} e^{-a p^{2}+b p} d p \\
& =\frac{1}{\sqrt{2 \pi \hbar}}\left(\frac{1}{2 \pi \beta^{2}}\right)^{1 / 4} e^{c} \int_{-\infty}^{\infty} a^{-a p^{2}+b p} d p \\
& \psi(x, t)=\frac{1}{\sqrt{2 \pi \hbar}}\left(\frac{1}{2 \pi \beta^{2}}\right)^{1 / 4} e^{c} \frac{\sqrt{\pi}}{\sqrt{\pi}} e^{b^{2} / 4 a^{2}}
\end{aligned}
$$

Plug everything back in!

$$
\begin{aligned}
& a=\left(\frac{i t}{2 m \pi}+\frac{i}{2 \beta^{2}}\right) \\
& b=\left(\frac{p}{\beta^{2}}+\frac{i x}{\pi}\right) \\
& c=-p_{0}^{2} / 2 \beta^{2}
\end{aligned}
$$

