Until now, we have worked with systems (1) that give vise to quantized energy states. This has been the result of either:
(1) The system having intrinisic spin, which is a fund mentally QM property (Chs. 1-3 of μ_{\leq}Intyre)
OK
(2) The system having a low enough energy such that it exhibits bound states (Ch.5. of Ms Indre)
We now turn to a system that has neither of these properties, but we still describe it using our QM tools.
The Free Particle is subject to no potential and thus can take on any energy \Rightarrow it is no longer Quantized.

The Free Particle
We will begin by describing the free particle w/ our QM tools.
We use the same eigenvalue equation,

$$
\hat{H}|E\rangle=E|E\rangle
$$

$$
\begin{array}{cc}
\text { With } \hat{H}=\frac{\hat{P}^{2}}{2 m}+V(\hat{x}), & \text { ID Hamitioniain } \\
\hat{H} \varphi_{E}(x)=E \varphi_{E}(x) & \text { ID eigenvalue } \\
\text { prblewn } \\
{\left[-\frac{\hbar^{2}}{2 m} \frac{d^{2}}{d x^{2}}+V(x)\right] \varphi_{E}(x)=E \varphi_{E}(x)}
\end{array}
$$

For the Free Particle $V(x)=0$ everguhere! so

$$
\frac{d^{2}}{d x^{2}} \varphi_{E}(x)=-\frac{2 m E}{\hbar^{2}} \varphi_{E}(x)
$$

All positive quantities

$$
\text { so } \quad k^{2} \equiv 2 m E / \hbar^{2}
$$

$$
\frac{d^{2} \varphi_{1}(x)}{d x^{2}}=-k^{2} \varphi_{E}(x)
$$

General solution:

$$
\varphi(x)=A e^{i k x}+B e^{-i k x} \quad k \geq 0
$$

- In this situation, we are effectively done. We have no boundary conditions to constrain $A, B, i k$. All we have is the normalization condition.
- However, as there are no constraints of k, say due to potential wells, it appears that any value of $k \geqslant 0$ is ok. And thus any energy, $E \geq 0$, is allowed.
- We could have Chose $A \cos (k x)+B \sin (k x)$ or $D \sin (k x+\delta)$, etc. But we will see the mathematical advantage of using $e^{i k x}$ as we explore the free particle.

Energy Eigenstates o Time Evolution
One of the none curious aspects of the free particle is that E is continuous, so that any E appearing in:

$$
\hat{H} \varphi_{E}(x)=E \varphi_{E}(x)
$$

is an eigenvalue of \tilde{H}, so long as

$$
\varphi_{E}(x)=A e^{i k x}+B e^{-i k x} \quad k=\sqrt{\frac{2 m E}{\hbar^{2}}}
$$

Corresponds to the same E.
This means the general solution represents the energy eigenstutes,

$$
\varphi_{E}(x)=A e^{i k x}+B e^{-i k x}
$$

So time Evolution is simply multiplying
by

$$
\begin{aligned}
& e^{-i E t / t} \\
& \psi_{E}(x, t)=\varphi_{E}(x) e^{-i E t / \hbar} \\
& \psi_{E}(x, t)=\left(A e^{i k x}+B e^{-i k x}\right) e^{-i E t / \hbar}
\end{aligned}
$$

Now, we begin to see why our choice of $e^{i k x}$ is beneficial \Rightarrow our solution leads to a classical/ wave form!

With $E=\hbar \omega$,

$$
\begin{aligned}
& \left.\psi_{E}(x, t)=A e^{i k x}+B e^{-i k x}\right) e^{-i \omega t} \\
& \psi_{E}(x, t)=A e^{i(k x-\omega t)}+B e^{-i(k x+\omega t)} \\
& \psi_{E}(x, t)=A e^{i k\left(x-\frac{\omega t}{k}\right)}+B e^{-i k\left(x+\frac{\omega t}{k}\right)}
\end{aligned}
$$

This wave function has the form, $f(x \pm v t)$ where $|V|=W / K \leftarrow$ phase velocity \rightarrow more later a right $(+x)$ propagating wave (A) and a left $(-x)$ propagating wave (B).
We will often allow k to ru from $-\infty$ to $+\infty$, in that case,

$$
\varphi_{k}(x)=A e^{i k x} \quad-\infty<k<\infty
$$

ane the wave vector eigenstates

