Finding Roots Numerically (Finite Square well)
We solved for the allowed energies of the finite square well and we were lett with two transcendental equations,
With $k=\sqrt{\frac{2 m E}{\hbar^{2}}}$ and $q=\sqrt{\frac{2 m\left(V_{0}-E\right)}{\hbar^{2}}}$
Yeven: $\quad k \tan \left(k_{a}\right)=q$
$\varphi_{\text {odd }}:-k_{\cot }(k a)=q$
$M \leq$ Intyre shows how to solve this problem graphically by finding the intersection of two functions.
We will discuss a different approach that will still yield the allowed energies "Root Finding.
Conceptually, we produce a function $f(x)$ and we search for x^{*}

Where $f\left(x^{*}\right)=0$.
There are may root finding methods, but We will use simplest \rightarrow the bisection method.
The Bisection Method

- The bisection method "brackets" a rout by using the fact that function is continuous and thus admits positive and negative values near the root.

- the bisection method will work with any continuous function. But it can be slow.
- If can also have problems we the function is oscillating wildly or when initial guesses ane bad.

Steps for Bisection Method.
(1) Pick two points near the root, $a+b$.
\Rightarrow Make sone $f(a)$ a $f(b)$ have opposite signs!
(2) Calculate the midpoint between $a d b \Rightarrow c=\frac{a+b}{2}$
(3) Calculate $f(c)$.
\Rightarrow check if $f(c)$ is smaller than tolerance
eg. if Tolerance is 0.005 check if

$$
\begin{aligned}
& -0.005<f(1)<0.005 \\
& \text { if it is, stop! } \\
& \text { if not, continue }
\end{aligned}
$$

(4) Assuming $|f(c)|>$ tolerance, check sign of $f(c)$.
(5) if $f(c)$ same sign as $f(a)$? replace a with $c \& f(a)$ with $f(c)$ if $f(c)$ same sign as $f(b)$?
replace b with c of $f(b)$ with $f(c)$ (4)
(6) Continue 2-5 until $|f(c)|<$ tolerance.

second step

$$
f\left(b_{1}\right) \otimes f\left(c_{2}\right)
$$

same sign

third step We could continue but that's the idea.

Back to the finite Square Well

$$
\begin{array}{rr}
k \tan _{\text {even solutions }}\left(k_{a}\right)=q & -k \cot (k a)=q \\
\text { odd solutions. }
\end{array}
$$

ME Intyne argues we can transform these equations using,

$$
z=k a=\sqrt{\frac{2 m E a^{2}}{\hbar^{2}}} \quad z_{0}=\sqrt{\frac{2 m V_{0} a^{2}}{\hbar^{2}}}
$$

o

$$
q a=\sqrt{\frac{2 m\left(V_{0}-E\right) a^{2}}{\hbar^{2}}}
$$

thus,

$$
\begin{aligned}
& (q a)^{2}+(k a)^{2}=z_{0}^{2} \\
& (q a)^{2}=z_{0}^{2}-(k a)^{2} \\
& (q a)^{2}=z_{0}^{2}-z^{2}
\end{aligned}
$$

Given that $q a=\left(k_{a}\right) t_{n}\left(k_{a}\right)$ even of $q a=-(k a) \cot (k a)$ odd
then,

$$
\begin{aligned}
& q a=z \tan (z) \\
& q_{a}=-z \cot (z)
\end{aligned}
$$

or,

$$
\begin{aligned}
z \tan (z) & =\sqrt{z_{0}^{2}-z^{2}} \\
-z \cot (z) & =\sqrt{z_{0}^{2}-z^{2}}
\end{aligned}
$$

We rewrite these as,

$$
\begin{aligned}
& z \tan (z)-\sqrt{z_{0}^{2}-z^{2}}=0 \\
& \sqrt{z_{0}^{2}-z^{2}}+z \cot (z)=0
\end{aligned}
$$

This is our root finding problem,

$$
\begin{aligned}
& f_{1}(z)=z \tan (z)-\sqrt{z_{0}^{2}-z^{2}} \\
& f_{2}(z)=\sqrt{z_{0}^{2}-z^{2}}+z \cot (z)
\end{aligned}
$$

Find $z^{* \prime}$ s such that

$$
f_{1}\left(z^{*}\right)=0 \text { or } f_{2}\left(z^{*}\right)=0
$$

A jupgter note book will walk through this with you on HW 3.

