Finding Roots Numerically (Finite Square Well) We solved for the allowed energies of the finise square well and we were left with two transcendental equations, With $k = \sqrt{\frac{2nE}{\hbar^2}}$ and $g = \sqrt{\frac{2n(V_0 - E)}{\hbar^2}}$ Yeven: ktan(ka)= 3 Hodd i - koot (ka) = g ME Intyre shows how to solve this problem graphically by finding the intersection of two functions. We will discuss a different approach that will still yield the allowed energies Koot Finding. Conceptually, we produce a function f(x) and we search for X*

Where
$$f(x^*)=0$$
. (2)
There are many rost finding methods, but
We will use simplest \rightarrow the bisection
method.
The Disection Method
- The bisection method "brackets" a root
by using the fact that function is
continuous and thus admits positive
and negative values near the root.
 f
 $positive y$
 $root we regative y$
 $seek f(x^*)=0$
- the bisection method will work with any
continuous function. But it can be show.
- It can also have problems we the
function is oscillating wildly or when
initial guesses are bad.

Eack to the finite Square Well

$$k \tan (ka) = g - k \cot (ka) = g$$

 $even solutions$ odd solutions.
ME Intyre argues we can transform
these equations using,
 $Z = ka = \int \frac{2mEa^2}{\pi^2} Z_0 = \int \frac{2mV_0 a^2}{\pi^2} d$
 $da = \int \frac{2m(V_0 - E)a^2}{\pi^2} d$

Hows,

$$(ga)^{2} + (ka)^{2} = z_{0}^{2}$$

$$(ga)^{2} = z_{0}^{2} - (ka)^{2}$$
or,

$$(ga)^{2} = z_{0}^{2} - z^{2}$$
Given that $ga = (ka)tan(ka)$ even
 $\forall ga = -(ka)cot(ka)$ odd
Huen,
 $ga = z + an(z)$
 $ga = -zcot(z)$

6r,

$$z + an(2) = \sqrt{z_0^2 - z^2}$$

 $-z + cot(z) = \sqrt{z_0^2 - z^2}$
We rewrite these as,
 $\overline{z + an(z)} - \sqrt{z_0^2 - z^2} = 0$
 $\sqrt{z_0^2 - z^2} + z + cot(z) = 0$
This is our root finding problem,
 $f_1(z) = z + an(z) - \sqrt{z_0^2 - z^2}$
 $f_2(z) = \sqrt{z_0^2 - z^2} + z + cot(z)$
Find $z^{*}s$ such that
 $f_1(z^{*}) = 0$ or $f_2(z^{*}) = 0$
A juppler note book will walk through
this with you on HW 3.