
 

Nuclei Atoms Molecules

Two of the most important observations
made in early 20th centuryphysics were

the observations of dark bright khes
lines in experiments with atomicgases

i

cool

When a broadband source lots of wavelengths
is directed at a cool gas low energy

and

the subsequent light is separated bycolor
some colors are missing on the screen

dark lines
For a given atomic gas Hydrogen Sodium

etc the same colors are always
missing and are unique to the gas



Bright lines

t
A hot gas highenergy will produce

light When that light is color separated
prism the resulting light consists
of specific colors only
For a given atomic gas these

colors

are always the same and uniqueto
the gas

These two experimental observations along
with the photoelectric effect lead to

the theoretical foundations of quantum
mechanics

In addition these two experiments lead

to the study of spectroscopy how



we get these dark to bright lines
in many fields of physics atomic

molecular nuclear astrophysics solidstate

laser etc
We now know these darklines tobe

absorptionspectra and the bright
lines to be emission spectra

EnergySpectra Ipinth
As we saw with spin k systems we

can describe QM systems in terms of

discrete ie quantized energies

With BEBoza WE eBe
Me

Htt thI It HH TEI 7
So the spectrum allowed energies for a
spin 112 system is quite simple
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so this indicates to us that if the
particle were to be driven from

1 7 to It that requires exactly
thwo of energy to be absorbed red

line
So we would expect a dark line precisely
at whatever color corresponds to

E Awo or f Wf or X
o

By contrast a transition from

1 7 to 1 7 would require exactly
thwo of energy be emitted blueline

So we would expect a bright line
of precisely the same color
Ee two or f Wf or X two

what about other QM systems

Other systems conceptually follow
the same idea but often havemany
more energy eigenstates We

can still use the same architecture



to understand measurements but if

we start tryingto do calculations we

need to introduce a new representative
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wavefunction spectral

Energy Eigenvalues and the
PositionRepresentation

Spin systems are really great b c they
introduce the quantum ideas with relatively
low dimensional systems 212 for Spinks
However most QM systems have higher
dimensionality b c they have a largenumber

of energy eigenstates
In fact some systems have an infinite
number of energy eigenstates

even though
those eigenstates are discrete

O



To handle these situations we will need

Some new mathematical architecture and

a new representation of our state vectors

l tiou

To build this up lets start with the

AIEi Ei IE energy
eigenvalueegu

For now we focus on ID problems The

Operator It is a description of the total

kinetic dpotential energy of a systemswritten
as operators 0

From classical mechanics we know

H THE potential I px2
kinetic

H Em thx

For QM p a become operators so that

H fInn Yaomionisiaisterns
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In advanced texts Sakurai Shankar etc

they derive these operators but we will

take them as given

t.x xki mTJIF.Y.to sis

It is not obvious yet but by choosing this
form of the operators we have also chosen

the position representation of the system
Also known as the position basis

Later we might work in the momentum

basis where 1I ihIppT
operators

dp Couomentum
bases

With our choice of operators we need

a position representation for the state
vectors147 and IE it
Such a representation is called a wavefunction

µ7 4x IEi7 9
generalstate energy eigenstate
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spatial
Awavefunction is a continuous representation

of our state vectors in position spade

What is nice about them is that theyturn
our energy eigenvalue equation IIIEi EelEi
into a partial differential equation something
we have many toolsto solve

Derivation

IEi7 feilxlx xp.ie it

with HalEi Ei IED
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ImE tVlN 9EilH EitE
Differential Eg for ID QMsystems

Properties of Wavefunctions

the wavefunction is the position representation
of our abstract state vectors 147 Formally

141 141477
This formal definition leads to variousproperties

41x is the position projection of 147 so

c4K
That is the absolute square of the
wave function is a continuous probability
function Phx

Because PCX is continuous from f a a

the normalization condition is now



IPad dx 1194112 1
probability

pad

q
Area7PaDX

density

This further allows us to x thx tax
define a probability over an internI

say from X to Xz

Pxixaxi Iinxnzax EhEniiiiiE.d

Xz

All of this relies on normalized wavefunctions

HH7 1 fjfH4WdxIJ

Finally we can map all our Ket notation to
the position representation

l i a
iTj



Whataboother eigen
in spin 1k we could project a state

vector onto another eigenstate say It x
and find the probability we would measure

a given eigenvalue say th12 for Sx

Psxetth 1ftI4712
for spin
1 2

We can use the same conceptfor our
position representation

Assume PA is an eigenstate of some operatorAT

AHat a 14A

if the system is in a state 14 then
the probability we measure a is

Paa Khal471 just like with
spin 112

All that changes is how we do this
calculation in the positionrepresentation



Iiiiiiiiiiiiiiiysianuxia
themost common use for us will be for energy
eigenstates ten 9mW

n KEnHN fhYxs4kld

Expectation Values

Lets finish our discussion of this formalism

with average expectation values

With spin 42 we could make use of

the linear algebra formulation

Ls all Sz147 lab E ti I
or the probability formulation

Ls Partth t RahlE



For our position representation the approach 130

is closerto method 2 In fact for I it is

very much a generalization to the
continuous

formulation

257 Lt 15147

fjfmxucxldx

f.fi 4lxIl2dx
expectationof

Lxay f xPCx d ax True for
all scalaroperators

All scalaroperators e.g I e x have this

weighted average analogy

For other operators leg E i it the

analogy is not applicable

sp L4 If 147
f It Cx l ihIx 441 dx
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ftp.s e ih ffuxtcxsfdxJ
expectation of p

This is the best we can do without knaving

4CX


