- We have built up most of the formalism we need to analyze QM systems. To now, we have focused mostly on spin 1/2 systems and spin eigen states. This is because spin has no classical analog and spin $1 / 2$ helps introduce QU formalism in a way that is analytically tractable.
- As we shift to study a wider variety of phenomenon, we will find that the energetics of the system are toll important. This becomes obvious as soon as we thy to study the dynamics of a QM system. (ie. how the system evolves in time). The dynamics of a QM system is governed by the Schrodinger Equation (postulat el)

$$
i \hbar \frac{d}{d t}|\psi(t)\rangle=H(t)|\psi(t)\rangle
$$

where $H(t)$ is the energy operator (Hamiltoman)

Energy Eigenstates
The Hamiltonian is an observable.
So,
\Rightarrow It is a square, Hermitian matrix remember? that has real eigenvalues.

It's eigenvalues are the energy of the various energy eigenstates.
We can setup the usual eigenvalue problem where E_{u} is the eigenvalue of $\left|E_{n}\right\rangle$ is the eigenstate.

$$
H\left|E_{n}\right\rangle=E_{n}\left|E_{n}\right\rangle
$$

Some call this the time ind. Schrodinger equ. It does not describe the dynamics so we will call it the energy eigenvalue equ."
Because H is a hermitian operator the energy eigenstates form a complete, orthonormal basis,

$$
\begin{gathered}
|\psi(t)\rangle=\sum_{n} c_{n}(t)\left|E_{n}\right\rangle \Leftarrow \text { complete } \\
\left\langle E_{m} \mid E_{n}\right\rangle=\delta_{n m} \Leftarrow \text { orthonormal }
\end{gathered}
$$

Time Evolution for Time Independent Hamiltonian As we want to study the dynamics, $|\Psi(t)\rangle$, we can actually generate a general solution For any nondegenerate, time independent Hamitonian. We will come to this later, but it means each eigenstate has a unique energy.
(Not all QM systems have this
property!
Let's start with

$$
|\psi(t)\rangle=\sum_{n} c_{n}(t)\left|E_{n}\right\rangle
$$

and pop it in to the S.E.

$$
i \hbar \frac{d}{d t}|\psi(t)\rangle=H|\psi(t)\rangle
$$

so we get,

$$
\begin{aligned}
& i \hbar \frac{d}{d t}\left(\sum_{n} c_{n}(t)\left|E_{n}\right\rangle\right)=H \sum_{n} c_{n}(t)\left|E_{n}\right\rangle \\
& i \hbar \sum_{n} \frac{d c_{n}(H)}{d t}\left|E_{n}\right\rangle=\sum_{n} c_{n}(t) E_{n}\left|E_{n}\right\rangle
\end{aligned}
$$

this is as far as we can go and this is (i nprinciple) a sum over many states.
We can make use of the orthonormality condition $\left\langle E_{m} \mid E_{n}\right\rangle=\delta_{m n}$

$$
\begin{aligned}
\left\langle E_{m}\right| i \hbar \sum_{n} \frac{d c_{n}(t)}{d t}\left|E_{n}\right\rangle & =\left\langle E_{m}\right| \sum_{n} C_{n}(t) E_{n}\left|E_{n}\right\rangle \\
i \hbar \sum_{n} \frac{d C_{n}(t)}{d t}\left\langle E_{m} \mid E_{n}\right\rangle & =\sum_{n} C_{n}(t) E_{n}\left\langle E_{m} \mid E_{n}\right\rangle \\
\delta_{m n} & \longleftrightarrow \delta_{m n}
\end{aligned}
$$

these collapse the sum to a single term. Where $n=m$.

$$
i \hbar \frac{d c_{m}(t)}{d t}=C_{m}(t) E_{m}
$$

or

$$
\frac{d C_{m}(t)}{d t}=-i \frac{E_{m}}{\hbar} C_{m}(t)
$$

The power in this expression is that it holds for all nondegenerate, time ind. Hamil toniaus!
We solved Differential Equations like this before.

$$
C_{m}(t)=C_{m}(t=0) e^{-i \frac{E_{n}}{\hbar} t}
$$

oscillatory solutions!

$$
e^{i \omega t}=\cos (\omega t)+i \sin (\omega t)
$$

So in general,

$$
|\psi(t)\rangle=\sum_{n} c_{n} e^{-i \frac{E_{n} t}{\hbar}}\left|E_{n}\right\rangle
$$

if you know your energy eigenstates were generated from a time independent, nondeg. Hamiltonian, then you know how any state vector will evolve intine.

Stationary States
Let's assume a QM system starts of in a particular energy eigenstate.

$$
|\psi(t=0)\rangle=\left|E_{0}\right\rangle
$$

after a time t, the state vector will evolve,

$$
|\psi(t)\rangle=c_{0} e^{-i E_{0} t / \hbar}\left|E_{0}\right\rangle
$$

Note: $c_{0}=1$ for this kex to be normalized for all time,

$$
\begin{aligned}
& \langle\psi(t) \mid \psi(+)\rangle=\left\langle E_{0}\right| c_{0}^{*} e^{\left.+i E_{0}+\left|/ c_{0} e^{-i E_{a} t \mid}\right| E_{0}\right\rangle} \\
& =C_{0}^{*} C_{0}\left\langle E_{0} \mid E_{0}\right\rangle=1 \quad\left|c_{0}^{2}\right|^{2}=1 \quad c_{0}=1 \\
& |\psi(t)\rangle=e^{-\frac{i E_{0} t}{\hbar}}\left|E_{0}\right\rangle \Leftarrow \text { so this state } \\
& \text { changes its }
\end{aligned}
$$

That does not affect measuremuts!
The observable A has an eigenvalue
a_{j} and eigenstate $\left|a_{j}\right\rangle$.
The probability of measuring $|\psi(t)\rangle$ in
$\left|a_{j}\right\rangle$ is time independent!

$$
\begin{aligned}
P_{a_{j}} & =\left|\left\langle a_{j} \mid \psi(t)\right\rangle\right|^{2} \\
& \left.=\left|\left\langle a_{j}\right| e^{-i E_{0} t / \hbar}\right| E_{0}\right\rangle\left.\right|^{2} \\
& =\left\langle a_{j}\right| e^{-i E_{0} t / \hbar}\left|E_{0}\right\rangle\left\langle E_{0}\right| e^{+i E_{0} t / \hbar}\left|a_{j}\right\rangle \\
& =\underbrace{e^{-i E_{0} t / \hbar} e^{+i E_{0} t / \hbar}}\left\langle a_{j} \mid E_{0}\right\rangle\left\langle\bar{E}_{0} \mid a_{j}\right\rangle \\
P_{a_{j}} & =\left|\left\langle a_{j} \mid E_{0}\right\rangle\right|^{2}
\end{aligned}
$$

This is energy eigenstates are stationary states
Because energy eigenstates are stationary states the probability to measure a given energy is time independent.

Consider

$$
|\psi(0)\rangle=C_{0}\left|E_{0}\right\rangle+C_{1}\left|E_{1}\right\rangle
$$

$$
\begin{aligned}
& |\psi(t)\rangle=c_{0} e^{-i E_{0} t / \hbar}\left|E_{0}\right\rangle+c_{1} e^{-i E_{1} t / \hbar}\left|E_{1}\right\rangle \\
& P_{E_{0}}=\left|\left\langle E_{0} \mid \psi(t)\right\rangle\right|^{2} \\
& \left.P_{E_{0}}=\left|\left\langle E_{0}\right| c_{0} e^{-i E_{0} t / \pi}\right| E_{0}\right\rangle+\left.\left\langle E_{0}\right| c c_{1} e^{-i E_{0}+/ / \mid}\left|E_{1}\right\rangle\right|^{2} \\
& \left.P_{E_{0}}=\left|\left\langle E_{0}\right| c_{0} e^{-i E_{0}+/ \hbar}\right| E_{0}\right\rangle\left.\right|^{2} \\
& \text { orthogonal, } O \\
& P_{E_{0}}=c_{0}^{2} \quad \text { same for } P_{E_{1}}=c_{1}^{2}
\end{aligned}
$$

This result holds for any operator that commutes with H. B/C energy eigenstates would be eigenstates of that operator. if $[H, \hat{O}]=0$ then
$P_{\hat{O}_{0}}$ is time independent b/c $\left|E_{0}\right\rangle$ is an eigenstate of $\hat{0}$.
If the operator dresa't commute $[H, A] \neq 0$ then eigenstates of A are superpositions of the energy eigenstates, $\left|E_{n}\right\rangle$.

Assume $\left|a_{0}\right\rangle$ is an eigenstate of $A w /(9)$ eigenvalue a_{0}.

$$
\left|a_{0}\right\rangle=\alpha_{0}\left|E_{0}\right\rangle+\alpha_{1}\left|E_{1}\right\rangle
$$

The probability of measuring a_{0} for the
state,

$$
|\psi(t)\rangle=C_{0}^{-i e_{0} t / \hbar}\left|E_{0}\right\rangle+c_{1} e^{-i E_{t} t / \hbar}\left|E_{1}\right\rangle
$$

is,

$$
\begin{aligned}
& P_{a_{0}}=\left|\left\langle a_{0} \mid \psi(t)\right\rangle\right|^{2} \\
= & \mid\left[\alpha_{0}^{*}\left\langle E_{0}\right|+\alpha_{1}^{*}\left\langle E_{1}\right|\right]\left[c_{0} e^{-i E_{0} t / \hbar}\left|E_{0}\right\rangle+c_{1} e^{-i E_{i} t / \hbar}\left|E_{1}\right\rangle\right]^{2}
\end{aligned}
$$

or thogonality helps alow! $\left\langle E_{0} \mid E_{1}\right\rangle=\left\langle E_{E} \mid E_{0}\right\rangle=0$

$$
P_{a_{0}}=\left|\alpha_{0}^{*} c_{0} e^{-i E_{0} t / \hbar}+\alpha_{i}^{*} c e^{-i E_{1} t / \hbar}\right|^{2}
$$

we can factor out the first phase,

$$
\begin{aligned}
& P_{a_{0}}=|\underbrace{e^{-i E_{0} t / \hbar}}_{1}|^{2}\left|\alpha_{0}^{*} c_{0}+\alpha_{1}^{*} c_{1} e^{-i\left(E_{1}-E_{0}\right) t / \hbar}\right|^{2} \\
& P_{a_{0}}=\left.\left|\alpha_{0}\right|_{0}^{2}\right|^{2}+\left.\left|\alpha_{1}\right| k_{1}\right|^{2}+2 \operatorname{Re}\left(\alpha_{0} c_{0}^{*} \alpha_{1}^{*} c_{1} e^{-i\left(E_{1}-E_{0}\right) t / \hbar}\right)
\end{aligned}
$$

So ble $[H, A] \neq 0, P a_{0}$ is time dependent and frequency of oscillation depends on the energy ditfernuce $\Rightarrow \omega_{10}=\frac{E_{1}-E_{0}}{\hbar}$
Let's end with an example that illustrates all these ideas.
Example! Problem 3.14 in ME Intone
A system starts out in

$$
|\psi(0)\rangle=c\left(3\left|a_{1}\right\rangle+4\left|a_{2}\right\rangle\right)
$$

$\left|a_{i}\right\rangle$ are normalized eigmstates of A with eifen values a_{i}.
In the $\left|a_{i}\right\rangle$ basis the Hamiltonian is represented by,

$$
H=E_{0}\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)
$$

(1) What energies are possible and what ane there probabilities?
(2) what is $\langle A\rangle$?

Solution:
(1) First observe that H is not diagonal in the $\left|a_{i}\right\rangle$ basis. So H of do not commute. So we have to diagonalize H.

$$
\begin{array}{r}
\operatorname{det}(H-I \lambda)=\left|\begin{array}{cc}
2 E_{0}-\lambda & E_{0} \\
E_{0} & 2 E_{0}-\lambda
\end{array}\right| \\
=\left(2 E_{0}-\lambda\right)^{2}-E_{0}^{2}=0 \quad \begin{array}{l}
\lambda_{1}=E_{0} \\
\left(2 E_{0}-\lambda\right)^{2}=E_{0}^{2} \\
\lambda_{2}=3 E_{0} \\
2 E_{0}-\lambda= \pm E_{0} \\
\lambda=2 E_{0} \mp E_{0}
\end{array} \quad \begin{array}{l}
\text { these ane the } \\
\text { possible }
\end{array}
\end{array}
$$

So,

$$
\begin{array}{ll}
H\left|\lambda_{1}\right\rangle=E_{0}\left|\lambda_{1}\right\rangle & \begin{array}{l}
\text { possible } \\
\text { energy } \\
H\left|\lambda_{2}\right\rangle=3 E_{0}\left|\lambda_{2}\right\rangle
\end{array} \\
\text { measurements }
\end{array}
$$

We need to find $\left|\lambda_{1}\right\rangle$ a $\left|\lambda_{2}\right\rangle$ B / C the probabilities depend on
normalize
normalize

$$
\begin{aligned}
& \left\langle\lambda_{1} \mid \lambda_{1}\right\rangle=|a|^{2}|b|^{2}=1 \\
& a=\frac{1}{\sqrt{2}} \quad b=-\frac{1}{\sqrt{2}}
\end{aligned}
$$

$$
\int_{\infty}\left|\lambda_{1}\right\rangle=\frac{1}{\sqrt{2}}\left|a_{1}\right\rangle-\frac{1}{\sqrt{2}}\left|a_{2}\right\rangle \doteq \frac{1}{\sqrt{2}}\binom{1}{-1}
$$

* Remember we are in the $\left|a_{i}\right\rangle$ basis $\lambda_{2}=3 E_{0}$.

$$
\begin{aligned}
& H\left|\lambda_{2}\right\rangle=3 E_{0}\left|\lambda_{2}\right\rangle \quad\left|\lambda_{2}\right\rangle=\binom{c}{d} \\
& E_{0}\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\binom{c}{d}=3 E_{0}\binom{c}{d}
\end{aligned}
$$

$$
\begin{aligned}
& \left|\left\langle\lambda_{1} \mid \psi(t)\right\rangle\right|^{2} \quad \&\left|\left\langle\lambda_{2} \mid \psi(t)\right\rangle\right|^{2} \\
& \underline{\lambda_{1}=E_{0}}: \quad\left|\lambda_{1}\right\rangle=\binom{a}{b} \\
& H\left|\lambda_{1}\right\rangle=E_{0}\left|\lambda_{1}\right\rangle \text { means, } \\
& E_{0}\left(\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right)\binom{a}{b}=F_{0}\binom{a}{b} \\
& \left.\begin{array}{l}
2 a+b=a \\
1 a+2 b=b
\end{array}\right\} \rightarrow \quad \begin{array}{l}
b=-a \\
a=-b
\end{array}
\end{aligned}
$$

$$
\left.\begin{array}{rl}
2 c+d & =3 c \\
c+2 d & =3 d
\end{array}\right\} \quad \begin{aligned}
d & =c \\
c & =d
\end{aligned}
$$

Normalize,

$$
\left\langle\lambda_{2} \mid \lambda_{2}\right\rangle=|c|^{2}+|d|^{2}=1
$$

$C=\frac{1}{\sqrt{2}} \quad d=\frac{1}{\sqrt{2}} E$ we probably could have guessed this
since $\left\langle\lambda_{1} \mid \lambda_{2}\right\rangle=0$

$$
\left|\lambda_{2}\right\rangle=\frac{1}{\sqrt{2}}\left|a_{1}\right\rangle+\frac{1}{\sqrt{2}}\left|a_{2}\right\rangle \pm \frac{1}{\sqrt{2}}\binom{1}{1}
$$

ok with $\left|\lambda_{1}\right\rangle d\left|\lambda_{2}\right\rangle$ we can determine $\left|a_{1}\right\rangle \&\left|a_{2}\right\rangle$ in the energy basis which we need for time evolution!

$$
G i \hbar \frac{d}{d t}|\psi(t)\rangle=H(t)|\psi(t)\rangle
$$

relies on the energy basis!

$$
\begin{aligned}
& \left|\lambda_{1}\right\rangle=\frac{1}{\sqrt{2}}\left|a_{1}\right\rangle-\frac{1}{\sqrt{2}}\left|a_{2}\right\rangle \\
& \left|\lambda_{2}\right\rangle=\frac{1}{\sqrt{2}}\left|a_{1}\right\rangle+\frac{1}{\sqrt{2}}\left|a_{2}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
& \left|\lambda_{1}\right\rangle+\left|\lambda_{2}\right\rangle=\frac{2}{\sqrt{2}}\left|a_{1}\right\rangle \\
& \left.\left|\left|a_{1}\right\rangle=\frac{1}{\sqrt{2}}\right| \lambda_{1}\right\rangle+\frac{1}{\sqrt{2}}\left|\lambda_{2}\right\rangle \\
& \left|\lambda_{2}\right\rangle-\left|\lambda_{1}\right\rangle=\frac{2}{\sqrt{2}}\left|a_{2}\right\rangle \\
& \left|a_{2}\right\rangle=-\frac{1}{\sqrt{2}}\left|\lambda_{1}\right\rangle+\frac{1}{\sqrt{2}}\left|\lambda_{2}\right\rangle
\end{aligned}
$$

We can rewrite $|\psi(0)\rangle$ in the energy basis now,

$$
\begin{aligned}
&|\psi(0)\rangle=C\left(3\left|a_{1}\right\rangle+4\left|a_{2}\right\rangle\right) \\
&=C\left(3\left(\frac{1}{\sqrt{2}}\left|\lambda_{1}\right\rangle+\frac{1}{\sqrt{2}}\left|\lambda_{2}\right\rangle\right)\right. \\
&\left.+4\left(-\frac{1}{\sqrt{2}}\left|\lambda_{1}\right\rangle+\frac{1}{\sqrt{2}}\left|\lambda_{2}\right\rangle\right)\right) \\
&|\psi(0)\rangle=C\left(-\frac{1}{\sqrt{2}}\left|\lambda_{1}\right\rangle+\frac{7}{\sqrt{2}}\left|\lambda_{2}\right\rangle\right)
\end{aligned}
$$

|et's normalize $|\psi(0)\rangle$,

$$
\begin{equation*}
\langle\psi \mid \psi\rangle=c^{2}\left(\frac{1}{2}+\frac{49}{2}\right)=c^{2} 25=1 \tag{15}
\end{equation*}
$$

$c^{2}=\frac{1}{25} \quad c= \pm \frac{1}{5} \quad$ overall phase diesn't matter
choose $+1 / 2$

$$
|\psi(0)\rangle=-\frac{1}{5 \sqrt{2}}\left|\lambda_{1}\right\rangle+\frac{7}{5 \sqrt{2}}\left|\lambda_{2}\right\rangle
$$

From S.E.,

$$
\begin{aligned}
& \text { From S.E., } \\
& |\psi(t)\rangle=\sum_{n} c_{n} e^{-i E_{n} t / \hbar}\left|E_{n}\right\rangle \\
& |\psi(t)\rangle=-\frac{1}{5 \sqrt{2}} e^{-i E_{0} t / \hbar}\left|\lambda_{1}\right\rangle+\frac{7}{5 \sqrt{2}} e^{-i \zeta E_{0} t / \pi}\left|\lambda_{2}\right\rangle
\end{aligned}
$$

Finally we can find the probabilcties.y

$$
\begin{aligned}
& \left\langle\lambda_{1} \mid \psi(t)\right\rangle=\left|\frac{1}{5 \sqrt{2}}\right|^{2}=\frac{1}{50} \\
& \left\langle\lambda_{2} \mid \psi(t)\right\rangle=\left|\frac{7}{5 \sqrt{2}}\right|^{9}=\frac{49}{50}
\end{aligned}
$$

Solution: $\langle A\rangle=$?
(2)

$$
\langle A\rangle=\langle\psi(t)| A|\psi(t)\rangle
$$

We have to rewrite $|\psi(t)\rangle$ in the $\left|a_{i}\right\rangle$ basis with time dependence!

$$
|\psi(t)\rangle=-\frac{1}{5 \sqrt{2}} e^{-i E_{0} / / \hbar}\left|\lambda_{1}\right\rangle+\frac{7}{5 \sqrt{2}} e^{-i 3 E_{0} t / \hbar}\left|\lambda_{2}\right\rangle
$$

with,

$$
\begin{aligned}
& \left|\lambda_{1}\right\rangle=\frac{1}{\sqrt{2}}\left|a_{1}\right\rangle-\frac{1}{\sqrt{2}}\left|a_{2}\right\rangle \\
& \left|\lambda_{2}\right\rangle=\frac{1}{\sqrt{2}}\left|a_{1}\right\rangle+\frac{1}{\sqrt{2}}\left|a_{2}\right\rangle
\end{aligned}
$$

So in the $\left|a_{i}\right\rangle$ basis,

$$
\begin{aligned}
|\psi(t)\rangle= & -\frac{1}{5 \sqrt{2}} e^{-i E_{0} t / \hbar}\left(\frac{1}{\sqrt{2}}\left|a_{1}\right\rangle-\frac{1}{\sqrt{2}}\left|a_{2}\right\rangle\right) \\
& +\frac{7}{5 \sqrt{2}} e^{-i 3 E_{0} t / \hbar}\left(\frac{1}{\sqrt{2}}\left|a_{1}\right\rangle+\frac{1}{\sqrt{2}}\left|a_{2}\right\rangle\right) \\
= & \underbrace{\left.-\frac{1}{10} e^{-i E_{0} t / \hbar}+\frac{7}{10} e^{-i 3 E_{0} t / \hbar}\right)}_{c_{1}(t)}\left|a_{1}\right\rangle
\end{aligned}
$$

$$
\begin{align*}
& +(\underbrace{-\frac{1}{10} e^{-E_{0} t / \hbar}+\frac{7}{10} e^{-i 3 E_{0} t / \hbar}}_{c_{2}(t)})\left|a_{2}\right\rangle \tag{17}\\
& |\psi(t)\rangle=c_{1}(t)\left|a_{1}\right\rangle+c_{2}(t)\left|a_{2}\right\rangle
\end{align*}
$$

now,

$$
\begin{aligned}
& \langle A\rangle=\langle\psi| A|\psi\rangle \leftarrow \begin{array}{l}
\text { exploitorthoogonality } \\
\left\langle a_{1} \mid a_{2}\right\rangle=0!
\end{array} \\
& =\left(c_{1}^{*}\left\langle a_{1}\right|+c_{2}^{*}\left\langle a_{2}\right|\right) A\left(c_{1}\left|a_{1}\right\rangle+c_{2}\left|a_{2}\right\rangle\right) \\
& =\left(c_{1}^{*}\left\langle a_{1}\right|+c_{2}^{*}\left\langle a_{2}\right|\right)\left(a_{1} c_{1}\left|a_{1}\right\rangle+a_{2} c_{2}\left|a_{2}\right\rangle\right) \\
& =\left|c_{1}\right|^{2} a_{1}+\left|c_{2}\right|^{2} a_{2} \\
& \langle A\rangle=a_{1}\left|c_{1}(t)\right|^{2}+a_{2}\left|c_{2}(t)\right|^{2} \text { yock. }
\end{aligned}
$$

