Operators, Eigenvalues, 乌' Eigenvectors
As we have begun to build up our understanding of kets and linear algebra representation of $Q M$, we begin to extend it by understanding that much of QM is solving the "Eigen value Problem".

- Trod critical postulates result in the Eigenvalue Problem framing.
Postulate 2: a physical oleservable is repusented by an operator acting on a let
Postulate 3: the only prissible measurement of an observable is an eigenvalue of the operator.
Let's start with the eigenvalue equations for our spin $1 / 2$ system.

$$
S_{z}|+\rangle=+\frac{\hbar}{2}|+\rangle
$$

operator bet eigenvalue bet
In words, acting on the $1+7$ ket with the S_{z} operator results in the eigen value $+\hbar / 2$ times the $|+\rangle$ kef.
Or... if we measure S_{z} for the $|t\rangle$ ket we get $+\hbar / 2$.
Similarly forthel \rightarrow kef,

$$
S_{z}|-\rangle=-\frac{\hbar}{2}|-\rangle
$$

Matrix Representations
As we saw earlier we can represent Lets as column vectors,

$$
\left.1+\rangle \doteq\binom{1}{0} \quad 1-\right\rangle \doteq\binom{0}{1}
$$

Now, because the δ_{z} operator for spin $1 / 2$ produces two
eigenvalues it must be represented (3) by a Square 2×2 matrix.

$$
\delta_{z} \doteq\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)
$$

In addition because it produces real eigenvalues it must also be Hermitian. (More on that later)
With $S_{z} \doteq\left(\begin{array}{ll}a & b \\ c & d\end{array}\right) \quad$ We can deter nine the elements by working through the eigenvalue problem
(1) $S_{z}|+\rangle \doteq\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{1}{0}=+\frac{\hbar}{2}\binom{1}{0}$
(2) $S_{z} \left\lvert\,-7 \doteq\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\binom{0}{1}=-\frac{\hbar}{2}\binom{0}{1}\right.$

Eqn (1) gives, $a=+\frac{\hbar}{2} \quad c=0$
Equ(2) gives, $b=0 \quad d=-\frac{\hbar}{2}$
So that,

$$
S_{z} \doteq \frac{\hbar}{2}\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right)
$$

A couple things to note.
(1) S_{z} is represented by a diagonal Matrix.
This is because an operator $\left(S_{z}\right)$ is always diagonal in its own basis (also δ_{z}).
This allows you to read off the eigen values.
(2) S_{z} is Hermitian as its eigenvalues are real.
Hermitian means that the Complex conjugate transpose of S_{z}
is the same as the original
Matrix.

$$
\begin{aligned}
& \frac{\downarrow \text { transpose }}{S_{z}^{\top} \doteq \frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)}
\end{aligned}
$$

bloc S_{z} is diagonal and the elements are real, it autoruatically satisfies this.
Spin Operators
We won't derive the other operators, but We can show that $S_{x}=\bar{S}_{x}^{+} \sum_{1} S_{y}=\overline{S_{y}^{T}}$.

$$
\begin{aligned}
& \delta_{z} \doteq \frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& S_{x} \doteq \frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \xrightarrow{\operatorname{con} j} \bar{S}_{x} \div \frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \rightarrow \operatorname{S}_{x}^{\top}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
& S_{y} \doteq \frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \xrightarrow{\operatorname{con} j} \overline{S_{y}} \doteq \frac{\hbar}{2}\left(\begin{array}{cc}
0 & i \\
-i & 0
\end{array}\right) \rightarrow \operatorname{trans}^{S_{y}^{\top}} \doteq \frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
\end{aligned}
$$

The complex conjugate transpose is called the adjoint.

$$
S_{z}^{+}\left(S_{z} \text { "dagger" }\right) \quad S_{z}=S_{z}^{+}
$$

So,

$$
S_{x} \doteq \frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \quad S_{y} \div \frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right) \quad S_{z}=\frac{\hbar}{2}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

Operators none generally

- operators have the same dimensions as the basis of the system under investigation. ("Hilbert Space")
- For Spin $1 / 2 \rightarrow 2$ eigenvalue $\rightarrow 2 \times 2$
spin $1 \rightarrow 3$ eigenvalues $\rightarrow 3 \times 3$
Spin $3 / 2 \rightarrow 4$ eigenvalus $\rightarrow 4 \times 4$ etc.

What characterizes the operator in its matrix representation are the values that it carries \rightarrow it matrix elements a general Matrix element is given by

$$
\langle b r a| O P E R A T O R \mid \text { ret }\rangle
$$

For a spin 1/2 system with the usual basis $1+7,1-7$ an operator would be represented as,

$$
A \doteq\left(\begin{array}{cc}
\langle+| A|+\rangle & \langle+| A|-\rangle \\
\langle-| A|+\rangle & \langle-| A|-\rangle
\end{array}\right)
$$

For a spin I system, we might have a basis like $|+\rangle,|0\rangle, 1-7$. So eigenvalue $\rightarrow+$ h o $\begin{aligned} & \text { in } \\ & \text { in }\end{aligned}$ 市 the operator A is represented,

$$
A \div\left(\begin{array}{ccc}
\langle+| A|+\rangle & \langle+| A|0\rangle & \langle+| A|0\rangle \\
\langle 0| A|+\rangle & \langle 0| A|0\rangle & \langle 0| A|-\rangle \\
\langle-| A|+\rangle & \langle-| A|0\rangle & \langle-| A|-\rangle
\end{array}\right)
$$

All of this work to develop these representations leads us to an important idea in QM.

Big Idea: Diagonalization of Operators
QM operators that represent physical observables have neal eigenvalues. The process of Diagonalization lets you find the eigenvalues and eigenvectors of the operator. This is very important for determining energy spectra (energy eigenvalues) and the associated states (energy eigenstovtes)
Example: Eigenvalue : Eijenstates of δ_{y} What ane the eigenvalues a eigenstates of S_{y} ?

$$
\delta_{y} \cong \frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
$$

Solution: This is a two step process (λ, then $\lambda>$)
First, we setup the eigenvalue eqn. Where λ are the unknown eigenvalues and $|\lambda\rangle$ are the
unknown eigenstates.

$$
\begin{aligned}
& S_{y}|\lambda\rangle=\lambda|\lambda\rangle \\
& \left(S_{y}-\lambda\right)|\lambda\rangle=0
\end{aligned}
$$

Solutions to this equation only exist if

$$
\operatorname{det}\left|S_{y}-\lambda I\right|=0^{\text {where }} I=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

So we solve this,
$\operatorname{det}\left|\left(\begin{array}{cc}0 & -i \hbar / 2 \\ i \hbar / 2 & 0\end{array}\right)-\lambda\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)\right|=0$
$\operatorname{det}\left|\begin{array}{cc}-\lambda & -i \hbar / 2 \\ i \hbar / 2 & -\lambda\end{array}\right|=0$
So,

$$
\lambda^{2}-\frac{\hbar^{2}}{4}=0 \quad \lambda= \pm \frac{\hbar}{2}\binom{\text { as }}{\text { expected })}
$$

So we got two eigenvalues as we should have gotten and they are distinct ("not degenerate").

Each eigenvalue gives rise to an eigenstate,
So we now use each λ, we can find (10) the associated eigenstates, $|\lambda\rangle$
With $\lambda=+\frac{\hbar}{2}$
$|\lambda\rangle=\binom{a}{b} \quad($ unknown $a d b)$

$$
\begin{aligned}
& S_{y}|\lambda\rangle=\frac{+\hbar}{2}|\lambda\rangle \\
& \frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)\binom{a}{b}=\frac{\hbar}{2}\binom{a}{b} \\
& \binom{-i b}{i a}=\binom{a}{b} \quad \text { so, } \quad b=i a \text { in both } \\
& \text { cases }
\end{aligned}
$$

This isn't enough information to determine $a \otimes b$. But the let $|\lambda\rangle$ needs to be normalized.

$$
\begin{aligned}
& \langle\lambda \mid \lambda\rangle=|a|^{2}+|b|^{2}=1 \\
& =|a|^{2}+|i a|^{2}=2 a^{2}=1 \quad a=\frac{1}{\sqrt{2}}
\end{aligned}
$$

So that,

$$
b=\frac{i}{\sqrt{2}}
$$

Thus the eigenstente is $\frac{1}{\sqrt{2}}\left(\begin{array}{l}1 \\ i \\ i\end{array}\right)$
B / C this is for $\delta y \& \lambda=+\pi / 2$ We label it with the Ret $|+\rangle y$.

$$
1+\rangle_{y} \doteq \frac{1}{\sqrt{2}}\binom{1}{i}
$$

We can perform similar calculations for $\lambda=-\hbar / 2$ and for S_{x}. We would end up with,

$$
\begin{aligned}
& 1+\rangle_{y} \doteq \frac{1}{\sqrt{2}}\binom{1}{i} \quad 1-7_{y} \doteq \frac{1}{\sqrt{2}}\binom{1}{-i} \\
& \left.1+\rangle_{x} \doteq \frac{1}{\sqrt{2}}\binom{1}{1} \quad 1-\right\rangle_{x} \doteq \frac{1}{\sqrt{2}}\binom{1}{-1}
\end{aligned}
$$

Projection Operators

- Now that we have built up this structure We can understand how some of the none confusing QMI experiments
produce the masinements we have seen.
- The projection operators we will develop provide the mathematical foundation that explain these experiments.
Let's look at how we construct these operators for a spin $1 / 2$ system. Starting with a general state in the S_{z} basis,

$$
\begin{aligned}
|\psi\rangle & =a|+\rangle+b|-\rangle \\
& =(\langle+\mid \psi\rangle)|+\rangle+(\langle-\mid \psi\rangle \mid)|-\rangle
\end{aligned}
$$

We can move the kets around,
the matrix representation of this is formed by computing the "outer product",

The individual terms are the "projection operators" for $|+\rangle \& 1-\rangle$

$$
\begin{aligned}
& P_{+}=|+\rangle\left\langle+1 \div\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right. \\
& P_{-}=|-\rangle\left\langle-1 \cong\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right.
\end{aligned}
$$

the tail P means projection not probability

Why is this useful? The projection operator (14) is like a "dot product". It returns a ket aligned with the panjection eigenstate and gives the amplitude and phase for that state to be reasoned in the associated eigunstate.

$$
\begin{aligned}
& P_{+}|\psi\rangle=|+\rangle\langle+\mid \psi\rangle=(\underbrace{\langle+\mid \psi\rangle}_{\text {Ampdplase, }, a})|+\rangle \\
& P_{-}|\psi\rangle=|-\rangle\langle-\mid \psi\rangle=(\underbrace{\langle-\mid \psi\rangle})|-\rangle
\end{aligned}
$$

Aupaphase, 6
Relationship to Measurement
As we have seen, a measurement results in finding a system in a particular state with a particular probability.
We can determine that ket from projection operators. (prostate 5)

$$
\begin{align*}
P_{\text {probability }}^{+} \tag{15}
\end{align*}=P_{+}\left\langle\left.\langle+\mid \psi\rangle\right|^{2}\right. \text { notail }
$$

Thus, the new state is given by,

$$
\left.\left|\psi^{\prime}\right\rangle=\frac{P_{+}|\psi\rangle}{\sqrt{\langle\psi| \rho_{+}|\psi\rangle}}=1+\right\rangle
$$

or in general for \mathbb{P}_{n} (Some projector.)

$$
\left|\psi^{\prime}\right\rangle=\frac{P_{n}|\psi\rangle}{\sqrt{\langle\psi| I_{n}|\psi\rangle}}
$$

In 2.2 .4 , McIntyre uses this frame work to show how this experiment works.

Expectation Values

- As QM is entirely probabilistic, it makes sense to understand what we might expect (on average) from a given operator for a given system.
This approach is based on probability theory Where the mean value is determined by a weighted average. For S_{z},

$$
\left\langle S_{z}\right\rangle=+\frac{\hbar}{2} P_{+}+\left(-\frac{\hbar}{2}\right) P_{\lambda}
$$

$\wedge_{\text {probability }}{ }^{2}$
as $P_{+}=|\langle+\mid \psi\rangle|^{2}$ and $P_{-}=|\langle-\mid \psi\rangle|^{2}$

$$
\begin{aligned}
\left\langle S_{z}\right\rangle & =+\frac{\hbar}{2}|\langle+\mid \psi\rangle|^{2}+\left(-\frac{\hbar}{2}\right)|\langle-\mid \psi\rangle|^{2} \\
& =+\frac{\hbar}{2}\langle\psi \mid+\rangle\langle+\mid \psi\rangle+\left(-\frac{\hbar}{2}\right)\langle\psi \mid-\rangle\langle-\mid \psi\rangle \\
& =\langle\psi|\left[+\frac{\hbar}{2}|+\rangle\langle+\mid \psi\rangle+\left(-\frac{\hbar}{2}\right)|-\rangle\langle-1 \psi\rangle\right] \\
& =\langle\psi|\left[S_{z}|+\rangle\langle+\mid \psi\rangle+S_{z}|-\rangle\langle-\mid \psi\rangle\right]
\end{aligned}
$$

$$
=\langle\psi| \delta_{z}[\underbrace{|1+\rangle\langle+1+\mid-\rangle\langle-1}_{1}]|\psi\rangle^{(\oplus)}
$$

expectation value using operators d State vectors
In general, we can find the expectation value of any operator using either approach,

$$
\mid\langle A\rangle=\langle\psi| A|\psi\rangle=\sum_{n} P_{n} a_{n}
$$

Example: Computing $\left\langle\underline{S}_{z}^{2}\right\rangle$ for $\left.|+\rangle+1-\right\rangle$ Let's compute the expectation value of the operator S_{z}^{2} for both $|+\rangle \mathrm{d} \mid-7$. for $|t\rangle$,

$$
\left\langle s_{z}^{2}\right\rangle=\langle+| S_{z}^{2}|+\rangle=\langle+| S_{z} s_{z}|+\rangle
$$

$$
\begin{align*}
& \left\langle s_{z}^{2}\right\rangle=\langle+| s_{z} \frac{\hbar}{2}|+\rangle=\frac{\hbar}{2}\langle+| s_{z}|+\rangle \tag{iB}\\
& \left\langle s_{z}^{2}\right\rangle=\frac{\hbar^{2}}{4}\langle+1+\rangle=\frac{\hbar^{2}}{4}
\end{align*}
$$

For $1-7$,

$$
\begin{aligned}
\left\langle s_{z}^{2}\right\rangle & =\langle-| s_{z}^{2}|-\rangle=\langle-| s_{z} s_{z}|-\rangle \\
\left\langle s_{z}^{2}\right\rangle & =\langle-| s_{z}\left(-\frac{\hbar}{2}\right)|-\rangle=-\frac{\hbar}{2}\langle-| s_{z}|-\rangle \\
& =\frac{\hbar^{2}}{4}\langle-1-\rangle=\frac{\hbar^{2}}{4}
\end{aligned}
$$

Commutation
Finally, lets look into why we ane un able to measure S_{x}, S_{y}, and S_{z} at the same time.

Commuting is something we take for granted in algebra. You would find it bonkers if someone told you that

$$
5 x \neq x 5
$$

But my oldest kid still doesn't belive these two equations are the save.
Her skepticism is what you need to bring to QM bic here we have non comnutertine algebra. And this commutation is central to Whether two observables can be measured together.
The commutator is given by,

$$
[A, B]=A B-B A
$$

In most of your experience so far,

$$
[A, B]=0 \quad A B-B A=0
$$

and thus $A B=B A$
this is how regular algebra works.

When two operators commute they shane eigenstentes (i.e. one measurement is a proxy for the other), so you can measure both obsewables together.
Assume $A B=B A$,
Let $A|a\rangle=a|a\rangle \quad$ eigenvalue a eigenstate.
then,

$$
|B A| a\rangle=B a|a\rangle
$$

and

$$
A B|a\rangle=q B|a\rangle
$$

\rightarrow the state $B \mid a>$ is

So, an eigen state of A We can measure A

$$
A(B|a\rangle)=a(B|a\rangle)
$$ * Bat the same time".

Non commuting Observables
This is for none common than you think in $Q M$. Take S_{x} a S_{z} for examples

$$
\begin{aligned}
& {\left[S_{z}, \delta_{x}\right]=S_{z} \delta_{x}-S_{x} \delta_{z}} \\
& \frac{0}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)-\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
\end{aligned}
$$

$$
\begin{aligned}
& =\left(\frac{\hbar}{2}\right)^{2}\left[\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)-\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\right] \\
& =\binom{\hbar^{2}}{\frac{2}{2}}\left[\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)-\left(\begin{array}{cc}
0 & -1 \\
1 & 0
\end{array}\right)\right]=\left(\frac{\hbar}{2}\right)^{2}\left(\begin{array}{cc}
0 & 2 \\
-2 & 0
\end{array}\right) \\
& S_{y} \doteq \frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right)
\end{aligned}
$$

so that

$$
\left[\delta_{x}, \delta_{z}\right]=i \hbar \delta_{y}
$$

In fact,

$$
\begin{aligned}
& {\left[S_{x}, S_{y}\right]=i \hbar S_{z}} \\
& {\left[S_{y}, S_{z}\right]=i \hbar S_{x}} \\
& {\left[S_{z}, S_{x}\right]=i \hbar S_{y}}
\end{aligned}
$$

these commutation relations ane important b / c they inform the pucision of potential measurement though the under taint principle

For example,

$$
\begin{aligned}
& \underset{\substack{\Delta S_{z} \\
\Delta S_{x}}}{ } \geq \frac{1}{2}\left|\left\langle\left[S_{z}, S_{x}\right]\right\rangle\right| \\
& \begin{array}{c}
\text { uncertuintyin } \\
\text { masonemuts }
\end{array} \geq \frac{1}{2}\left|\left\langle i \hbar S_{y}\right\rangle\right| \\
& \geq \frac{\hbar}{2}\left|\left\langle S_{y}\right\rangle\right| \\
& \Delta S_{z} \Delta S_{x} \geq\left(\frac{\hbar^{2}}{2}\right)^{3}
\end{aligned}
$$

Of in general

$$
\Delta A \triangle B \geq \frac{1}{2}|\langle[A, B]\rangle|
$$

