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Project 1 </ins>

Rabbit versus Sheep

We are going to investage the Lotka-Volterra model of competition. Here the two species

are rabbits and sheep. Both species compete for the same limited food supply (grass).

Before using this model, we must make some assumptions:

In absense of the competing species, each species would grow according to its growth

rate to its carring capacity

Ignore all other confounding variables like other animals, weather, etc

When a rabbit and sheep are trying to eat in the same area of grass, usually the sheep

nudges the rabbit away and gets the food

Suppose that both species are competing for the same food supply (grass) and the amount

available is limited. Furthermore, ignore all other complications, like predators, seasonal

effects, and other sources of food. Then there are two main effects we should consider:

1. Eachspecieswouldgrowtoitscarryingcapacityintheabsenceofthe other. This can be

modeled by assuming logistic growth for each spe- cies (recall Section 2.3). Rabbits

have a legendary ability to repro- duce, so perhaps we should assign them a higher

intrinsic growth rate

1. When rabbits and sheep encounter each other, trouble starts. Sometimes the rabbit

gets to eat, but more usually the sheep nudges the rabbit aside and starts nibbling (on

the grass, that is). We’ll assume that these conflicts occur at a rate proportional to the

size of each popula- tion. (If there were twice as many sheep, the odds of a rabbit

encoun- tering a sheep would be twice as great.) Furthermore, we assume that the
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conflicts reduce the growth rate for each species, but the effect is more severe for the

rabbits.

To find the fixed points for the system, we solve x 0 and y 0 simultane- ously. Four fixed

points are obtained: (0,0), (0,2), (3,0), and (1,1). To classify them, we compute the Jacobian:

Imports

First, build all functions needed to preform numerical
integration

ẋ = x(3 − x − 2y)

ẏ = y(2 − x − y)

 where x(t) = population of rabbits, y(t)  population of sheep  with x, y > 0

In [313… import matplotlib.pyplot as plt
import numpy as np
from scipy.integrate import solve_ivp
from matplotlib.colors import Normalize
import matplotlib.cm as cm

In [314… #fuction to give our ODEs
def model_eqn(x, y, alpha=3, beta=2): 
    xdot, ydot = [x*(alpha - x - beta*y), y*(beta -x -y )]
    return xdot, ydot

#function to build phase plot
def model_phase(X, YX, alpha, beta):
    xdot, ydot = np.zeros(X.shape), np.zeros(YX.shape)
    Xlim, Ylim = X.shape
    for i in range(Xlim):
        for j in range(Ylim):
            xloc = X[i, j]
            yloc = YX[i, j]
            xdot[i,j], ydot[i,j] = model1_eqn(xloc, yloc,alpha ,beta )
    return xdot, ydot

#function to put in form for solve ivp
def model_solve_ivp(t,curr_vals, alpha, beta): 
    x, y = curr_vals 
    xdot, ydot = model1_eqn(x,y, alpha, beta)
    return xdot,ydot

# Set conditions and call solve_ivp to numerically integrate
alpha=3
beta=2
tmax = 30
dt = 0.01
tspan = (0,tmax)
t = np.arange(0,tmax,dt)
initial_condition = [4,4] 
solved = solve_ivp(model_solve_ivp,tspan,initial_condition,t_eval = t, 
                   args = (alpha, beta,),method="RK45", rtol=1e-8 , atol=1e-8, 
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Now look at  and  vs timePrabbit Psheep

In [315… #This function solves the ODE for certain initial conditions
#and plots rabbit pop and sheep pop vs time
def plot_pop_v_t(axis_number, x0, y0):
    initial_condition= [x0,y0]
    #numerically integrate
    solved = solve_ivp(model_solve_ivp,tspan,initial_condition, t_eval=t, args=
    
    #plot P rabbit
    axs[axis_number].plot(t, solved.y[0], color="darkviolet", label = r'$P_{rab
    #plot P sheep
    axs[axis_number].plot(t, solved.y[1], label = r'$P_{Sheep} $ ', color= 'ora
    
    axs[axis_number].set_xlabel("Time")
    axs[axis_number].set_ylabel("Population")
    axs[axis_number].set_title(r'$P_0(x)= $ ' + str(x0)+ r'  $P_0(y)= $' + str(
    axs[axis_number].grid()

In [316… #call above function for various starting populations 
fig, axs = plt.subplots(2,2, figsize=(15, 10) )
axs = axs.flat

plot_pop_v_t(0, x0= 0.2, y0= 0.2)
plot_pop_v_t(1, x0= 3, y0= 3)
plot_pop_v_t(2, x0= 1, y0= 2)
plot_pop_v_t(3, x0= 2, y0= 1)

handles, labels = axs[0].get_legend_handles_labels() #get legend from a plot
fig.legend(handles, labels, fontsize=20, loc= 'upper right') #add as figure leg

plt.suptitle("Populations vs Time ", size=20);



10/8/23, 12:00 PM 1067752-870602 - Caroline Seidenzahl - Sep 29, 2023 1140 PM - PHY415_Project_1

file:///Users/caballero/Desktop/Project 1/Caroline_Seidenzahl.html 4/7

Findings

These plots show us how each population eventually reaches a steady equilibrium.

One species will reach a maximum population and the other will go extint.

We can also see that when the populations are far away from 0, they quickly shoot

down before approaching equilibrium. Whereas when they start near 0, they increase

or decrease more slowly to equilibrium.

Now loook at some phase portraits

In [319… # Plotting stuff
N = 40
x = np.linspace(0, 5., N)
y= np.linspace(0., 5., N)
X, Y = np.meshgrid(x, y)
xdot, ydot = model_phase(X, Y, alpha, beta)

fig, axs = plt.subplots(1,2, figsize=(17, 7) )
axs = axs.flat

axs[0].streamplot(X, Y, xdot, ydot, color='k' , broken_streamlines = False)
axs[0].plot(solved.y[0],solved.y[1],lw = 3,c = 'dodgerblue') # plot trajectory 
axs[0].grid()
axs[0].set_xlim((0, 5))
axs[0].set_ylim((0, 5))
axs[0].set_xlabel('Rabbit Ppopulation')
axs[0].set_ylabel('Sheep Population')
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Findings

At Critical Points:

The phase plots above shows there are two stable nodes of the solutions at  and

.

They represent stable equilibriums of the populations; so at these points, the

populations of rabbits and sheep will stay constant. We can see that when this

happens, one population decreases to zero while the other increases to maximum

population- it's carrying capacity.

This makes sense because if there are any animals of the competing species present,

they will cause the growth rate of the orginal species to decrease and it will not be

able to reach full carrying capacity.'

On the phase portraits, we also see an unstable node at . This is marked by the

stream of vectors rushing out of the origin. Therefore  is an unstable equilibrium

of the populations. This makes sense because when  and  are both 0,

neither will change. But with anything just above , the populations of both will

start to grow according to their growth rate before reaching an equilibrium.

axs[0].set_title('Phase Plot ')

magnitude = np.sqrt(xdot**2 + ydot**2) 
colors = np.log(magnitude+0.01) #have colors to represent length of vectors
Q=axs[1].streamplot(X, Y, xdot, ydot, broken_streamlines = False,
                   color=colors, cmap = cm.inferno)
axs[1].grid()
axs[1].set_xlim((0, 5))
axs[1].set_ylim((0, 5))
axs[1].set_xlabel('Rabbit Population')
axs[1].set_ylabel('Sheep Population')
axs[1].set_title('Colored-Scaled Phase Plot ')
cbar = plt.colorbar(Q.lines)
cbar.set_label(r'$\log{\left|\mathbf{E}\right|}$')

(0, 2)

(3, 0)

(0, 0)

(0, 0)

Prabbits Psheep

(0, 0)
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Lastly we can see a stadle point at . This is marked by solutions rushing toward it

in one direction and away from it in another. This means there exisits one solution that

goes staight into , and therefore it is technically possible for the two species to

coexisit forever. But reality will never meet these conditions exactly, so the two

species will never stay constant infinetly.

Vector Length:

By looking at the colored-scaled portrait, we can see how the magnitudes of the

solution vectors change. The vectors get longer as we stray further from our critical

points in the positive direction. This means that at high values, solutions rush toward

critical points, ie the populations quickly decrease toward equilibrium.

We also can note that vector magnitudes are quite small around  and also on the

trajectory from  to . Therefore populations slowly move towards equilibiurm

in these places.

Looking at more trajectories on the phase portrait

(1, 1)

(1, 1)

(0, 0)

(0, 2) (3, 0)

In [351… initial_condition= [0.2,0.2]
solved1 = solve_ivp(model_solve_ivp,tspan,initial_condition, t_eval=t, args=(al

initial_condition= [5,4]
solved2 = solve_ivp(model_solve_ivp,tspan,initial_condition, t_eval=t, args=(al

initial_condition= [1,4]
solved3 = solve_ivp(model_solve_ivp,tspan,initial_condition, t_eval=t, args=(al

initial_condition= [4.5,1.5]
solved4 = solve_ivp(model_solve_ivp,tspan,initial_condition, t_eval=t, args=(al

In [373… plt.figure(figsize=(12,9))

magnitude = np.sqrt(xdot**2 + ydot**2) 
colors = np.log(magnitude+0.01) #have colors to represent length of vectors
Q2 =plt.streamplot(X, Y, xdot, ydot, broken_streamlines = False,
                   color=colors, cmap = 'bone')
plt.plot(solved1.y[0],solved1.y[1],lw = 3,c = 'crimson', label= r'$P_0(x)=0.2 ,
plt.plot(solved2.y[0],solved2.y[1],lw = 3,c = 'mediumorchid', label= r'$P_0(x)=
plt.plot(solved3.y[0],solved3.y[1],lw = 3,c = 'magenta', label= r'$P_0(x)=1 , P
plt.plot(solved4.y[0],solved4.y[1],lw = 3,c = 'darkorange', label= r'$P_0(x)=4.

plt.grid()
plt.xlim((0, 5))
plt.ylim((0, 5))
plt.xlabel('Rabbit Population')
plt.ylabel('Sheep Population')
plt.title('Colored-Scaled Phase Plot ')
plt.legend(bbox_to_anchor=[1.7, 0.5], fontsize=15)
cbar = plt.colorbar(Q2.lines)
cbar.set_label(r'$\log{\left|\mathbf{E}\right|}$')
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This further shows how one species always goes extinct while the other reaches

carrying capacity.

In [ ]:  


