Carpted Oscillations
Let's nemind oursehes of singhe SHO results.

FOM

$$
\begin{array}{ll}
A M-\sqrt[M]{A} & \begin{array}{l}
m \ddot{x}
\end{array}=-k x \\
\ddot{x}=-\frac{k}{m} x=-w^{2} x \\
\square I I! & w=+\sqrt{k / m}
\end{array}
$$

$$
x(t)=A \cos (\omega t+\phi) \leftarrow \text { me've used }
$$ this nony

temes
Let's add another spring,

$K_{L} \quad a K_{R}$ different spring constants
concerned with displacement frome equithriven

EM:

$$
\begin{aligned}
& M \ddot{x}=-k_{L} x-k_{R} x \\
& M_{x}^{\ddot{x}}=-\left(k_{L}+k_{R}\right) x
\end{aligned}
$$

80

$$
\ddot{x}=-\left(\frac{k_{L}+k_{R}}{M}\right)_{x}=-w^{2} x
$$

Where

$$
\omega=+\sqrt{\frac{k_{L}+k_{R}}{M}} \quad k_{L}+k_{R}=k_{\text {eff }}
$$

So no difference from first case except change in ω,

$$
x(t)=A \cos \left(\sqrt{\frac{t}{M}} t+\phi\right)
$$

Lets Bring In a second Mass,

Note: We only have two interactions per mass. The dotted lines show this.
$\xrightarrow[\text { Again only concerned about displacement }]{\substack{x_{2}}}$ fum equilibrium. We get 2 linear and order Diffy Qs,
EaM:

$$
\begin{aligned}
& \ddot{x_{1}}=-k_{2} x_{1}+k_{c}\left(x_{2}-x_{1}\right) \\
& m \ddot{x_{2}}=-k_{R} x_{2}-k_{c}\left(x_{2}-x_{1}\right)
\end{aligned} \quad \begin{aligned}
& \text { Neliton's } \\
& \text { Third Law } \\
& \text { pairs! }
\end{aligned}
$$

and thus,

$$
\begin{aligned}
& \ddot{x}_{1}=-\left(\frac{k_{L}+k_{c}}{M_{1}}\right) x_{1}+\frac{k_{c}}{m_{1}} x_{2} \\
& \ddot{x}_{2}=+\frac{k_{c} x_{1}}{m_{2}}-\left(\frac{k_{1}+k_{c}}{m_{2}}\right) x_{2}
\end{aligned}
$$

We have 2 copped 2 In order linear Diffy Qs. We have may toils to sole

Let's make this model simpler where (4) $k_{2}=k_{C}=k_{R}=k \quad$ and $M_{1}=M_{2}=\mu$

- same Musses and springs
- good model in QM, Stat Mech, Wanes,?
amP solids.
New EOM (same al $\psi k ' s$)

$$
\begin{aligned}
& \ddot{x}_{1}=-\frac{2 k}{m} x_{1}+\frac{k}{m} x_{2} \quad \text { How to solve? } \\
& \ddot{x}_{2}=\frac{k}{m} x_{1}-\frac{2 k}{m} x_{2}
\end{aligned}
$$

Let's do this in 2 ways,

1) linear change of variable to decouple the egns.
2) normal mode analysis

Change of Variables
We are going to make a change of variable specifically,

$$
x_{c m}=\frac{x_{1}+x_{2}}{2}, \quad x_{\text {dis }}=\frac{x_{1}-x_{2}}{2}
$$

center of mass cord

These are linear tramstorms b/c

$$
\begin{aligned}
& \dot{x}_{c m}=\frac{d x_{c m}}{d t}=\frac{1}{2}\left(\frac{d x_{1}}{d t}+\frac{d x_{2}}{d t}\right) \text { no coss terms! } \\
& \ddot{x}_{c m}=\frac{d^{2} x_{c m}}{d t}=\frac{1}{2}\left(\ddot{x}_{1}+\ddot{x}_{2}\right) \longleftarrow
\end{aligned}
$$

EL Lets eliminate $x_{1} d x_{2}$ for $x_{\text {cm }}$ a $x_{d \text { is }}$

$$
\begin{aligned}
& \ddot{x}_{1}=-\frac{2 k}{m} x_{1}+\frac{k}{m} x_{2} \quad \ddot{x}_{2}=\frac{k}{m} x_{1}-\frac{2 k}{m} x_{2} \\
& \frac{\ddot{x}_{1}+\ddot{x}_{2}}{2}=\left(-\frac{k}{m} x_{1}+\frac{k}{2 m} x_{2}+\frac{k}{2 m} x_{1}-\frac{k}{m} x_{2}\right) \\
& \frac{\ddot{x}_{1}+\ddot{x}_{2}}{2}=-\frac{k}{2 m}\left(x_{1}+x_{2}\right) \quad \text { so that, } \\
& \frac{\ddot{x}_{c m}}{2}=-\frac{k}{m} x_{c m} \\
& \frac{\ddot{x}_{1}-\ddot{x}_{2}}{2}=\left(-\frac{k}{m} x_{1}+\frac{k}{2 m} x_{2}-\frac{k}{2 m} x_{1}+\frac{k}{m} x_{2}\right) \\
& \frac{\ddot{x}_{1}-\ddot{x}_{2}}{2}=-\frac{3 k}{2 m}\left(x_{1}-x_{2}\right) \text { so that } \\
& \ddot{x}_{d i s}=-\frac{3 k}{m} x_{\text {dis }}
\end{aligned}
$$

So we found SHO!

$$
\begin{array}{ll}
\ddot{x}_{c m}=-\omega_{c m}^{2} x_{c m} & \text { where } \omega_{c m}=\sqrt{k} / u \\
\ddot{x}_{d i s}=-\omega_{\text {dis }}^{2} x_{d i s} & \text { where } \omega_{\text {dis }}=\sqrt{\frac{3 k}{M}}
\end{array}
$$

and thess,

$$
\begin{aligned}
& x_{c m}(t)=A \cos \left(\omega_{c m} t+\phi_{c m}\right) \\
& x_{\operatorname{dis}}(t)=B \cos \left(\omega_{\text {dis }} t+\phi_{\text {dis }}\right)
\end{aligned}
$$

are general solutions
Given initial conditions $X_{1}(t=0), \dot{x}_{1}(t=0)$,

$$
x_{2}(t=0), \dot{x}_{2}(t=0)
$$

We can find particular solutions.
and we com find $x_{1}(t) \& x_{2}(t)$ by simply adding / subtracting solutions,

$$
\begin{aligned}
& x_{c m}=\frac{x_{1}+x_{2}}{2} \quad x_{\text {dis }}=\frac{x_{1}-x_{2}}{2} \\
& x_{1}(t)=x_{\text {cm }}(t)+x_{\text {dis }}(t) \\
& x_{2}(t)=x_{\text {cm }}(t)-x_{\text {dis }}(t)
\end{aligned}
$$

Normal Modes
The approach we took above works well for Q boches because the canter of mass is a natural choice forchange of variable.
But with N bodies, how do we choose linear transformations? It's hand! So lets' look at an approach that works for many linear problems: Normal Modes.

Normal Modes can be thought of as natural often simple behowiors. They have unique oscillation frequencies. * sonutines they con be degunate (same w, diff mode)

Process of using normal modes

We assume a type of solution heme,

$$
x(t)=A_{k} \cos (\omega t+\phi) \quad \text { or } \quad x(t)=C e^{i \omega t}
$$

oscillating solutions with unknown constant coeffs Reminder: Niffy Q.

$$
\begin{array}{ll}
\ddot{x}_{1}=-\frac{2 k}{m} x_{1}+\frac{k}{m} x_{2} & \text { plugging in } \\
\ddot{x}_{1}=C_{1} e^{i \omega t} \\
\ddot{x}_{2}=\frac{k}{m} x_{1}-\frac{2 k}{m} x_{2} & x_{2}=c_{2} e^{i \omega t} \text { gives, }
\end{array}
$$

(1) (2)
$\left.\begin{array}{l}\text { A) }-\underline{w}^{2} C_{1}=-\frac{2 k}{m} C_{1}+\frac{k}{m} C_{2} \\ \text { B) }-\underline{w^{2}} C_{2}=\frac{k}{m} C_{1}-\frac{2 k}{m} C_{2}\end{array}\right] \begin{gathered}\text { three urdu } \\ \text { two equs. }\end{gathered}$
This of b/c C_{1} or C_{2} sets the other (energy limited; only I value of total energy possible)
ANJ Aa B

$$
\begin{aligned}
-\omega^{2} C_{1}-\omega^{2} c_{2} & =-\frac{2 k c_{1}}{m}+\frac{k}{m} c_{2}+\frac{k}{m} c_{1}-\frac{2 k}{m} c_{2} \\
-\omega^{2}\left(c_{1}+c_{2}\right) & =-\left(\frac{k}{m}\right)\left(c_{1}+c_{2}\right) \quad \mapsto \omega^{2}=\frac{k}{m} \\
c_{1} & \propto c_{2} \neq 0 \quad \text { bic amplitudes }
\end{aligned}
$$

Subtract $A+B$

$$
\begin{aligned}
& -\omega^{2}\left(c_{1}-c_{2}\right)=-\frac{2 k}{m} c_{1}+\frac{k}{m} c_{2}-\frac{k}{m} c_{1}+\frac{2 k}{m} c_{2} \\
& -\omega^{2}\left(c_{1}-c_{2}\right)=-\frac{3 k}{m}\left(c_{1}-c_{2}\right) \quad \omega^{2}=\frac{3 k}{m}
\end{aligned}
$$

Hold up!
These transformations and oo r normal mode analysis gave vs the same w'!
That bile ours transfrumetions were moving us to normal nodes! I this will Node 1: $w^{2}=k / m$
a basic oscillation w / one not be the case $\frac{\text { always }}{\text { we picked }}$
spring.
Whole system a good oscillates thaws form. no inner spring conpressim
Mode 2: $\omega^{2}=\frac{3 k}{M} \leftarrow$ higher frequency oscillation like a spring with $3 k$ spring cousctat. $\frac{1+\text { mim }}{111}$ we compressed the middle spring!

Mode 2
oscillating in opp.
directions
$2 k!$ both corpus!
OK this is cal but can we generalize this approach? Yes!

Consider writing our Fowls as a matrix equation.

$$
\begin{aligned}
& \ddot{x}_{1}=-\frac{2 k}{m} x_{1}+\frac{k}{m} x_{2} \\
& \ddot{x}_{2}=\frac{k}{m} x_{1}-\frac{2 k}{m} x_{2} \\
& \text { let } \vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \quad \stackrel{\circ}{\vec{x}}=\left[\begin{array}{l}
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{array}\right] \\
& \stackrel{\ddot{\rightharpoonup}}{\vec{x}}=A \vec{x} \quad A \quad \text { matrix of coefficients } \\
& {\left[\begin{array}{l}
\ddot{x}_{1} \\
\ddot{x}_{2}
\end{array}\right]=\left[\begin{array}{cc}
-2 \mathrm{k} / \mathrm{m} & \mathrm{k} / \mathrm{m} \\
\mathrm{~K} / \mathrm{m} & -2 \mathrm{k} / \mathrm{m}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right] \hat{A}=\left[\begin{array}{ll}
a_{00} & a_{00} \\
a_{10} & a_{11}
\end{array}\right]}
\end{aligned}
$$

We assume a solution again $x(t)=$ (II) so, this produces this eigenvalue problem g

$$
\vec{x}=\overrightarrow{A \vec{x}}=-w^{2} \vec{x}
$$

Eigenvalue
Pubeur

$$
\left(\underline{A}+I \omega^{2}\right) \vec{x}=0
$$

$\operatorname{det}\left|A+I \omega^{2}\right|=0$ gives w eigmuxkes
$\operatorname{det}\left|\begin{array}{cc}-\frac{2 k}{m}+\omega^{2}+\frac{k}{m} \\ +\frac{k}{m} & -\frac{2 k}{m}+\omega^{2}\end{array}\right|=0$

$$
\begin{aligned}
\left(-\frac{2 k}{m}+w^{2}\right)^{2}-\frac{k^{2}}{m^{2}} & =0 \\
-\frac{2 k}{m}+w^{2} & = \pm \frac{k}{m}
\end{aligned}
$$

$$
\begin{aligned}
& \omega^{2}= \pm \frac{k}{m}+\frac{2 k}{m} \Rightarrow \frac{k}{m} \text { and } \frac{3 k}{m} \\
& \omega_{1}=+\sqrt{\frac{k}{m}} \quad \omega_{2}=+\sqrt{\frac{3 k}{m}}
\end{aligned}
$$

Sauce two modes!!

Ok but how do we know these modes Correspond to:

Mode 1 :
 move together no central spring compression
Mode 2:
Let's go back to $x_{1}(t) \& x_{2}(t)$
for mode $1 \quad x_{1}(t)=x_{2}(t)$
that is, the oscillations follow exactly.
for mode $2 \quad x_{1}(t)=-x_{2}(t)$
that is, the oscilliation are precratig 180° out of phase.

