Chapter 1 Free Oscillations of Simple Systems

1.1  Introduction

The world is full of things that move. Their motions can be broadly cate-
gorized into two classes, according to whether the thing that is moving
‘stays near one place or travels from one place to another. Examples of the
first class are an oscillating pendulum, a vibrating violin string, water slosh-
ing back and forth in a cup, electrons vibrating (or whatever they do)
in atoms, light bouncing back and forth between the mirrors of a laser.
Parallel examples of traveling motion are a sliding hockey puck, a pulse
traveling down a long stretched rope plucked at one end, ocean waves roll-
ing toward the beach, the electron beam of a TV tube; a ray of light
emitted at a star and detected at your eye. Sometimes the same phenom-
enon exhibits one or the other class of motion (i.e., standing still on the
average, or traveling) depending on your point of view: the ocean waves
travel toward the beach, but the water (and the duck sitting on the surface)
goes up and down (and also forward and backward) without traveling,
The displacement pulse travels down the rope, but the material of the rope
vibrates without traveling.

We begin by studying things that stay in one vicinity and oscillate or vi-
brate about an average position. In Chaps. 1 and 2 we shall study many
examples of the motion of a closed system that has been given an initial
excitation (by some external disturbance) and is thereafter allowed to oscil-
late freely without further influence. Such oscillations are called free or
natural oscillations. In Chap. 1 study of these simple systems having one
or two moving parts will form the basis for our understanding of the free
oscillations of systems with many moving parts in Chap. 2. There we shall
find that the motion of a complicated system having many moving parts
may always be regarded as compounded from simpler motions, called
modes, all going on at once. No matter how complicated the system, we
shall find that each one of its modes has properties very similar to those of
a simple harmonic oscillator. Thus for motion of any system in a single
one of its modes, we shall find that each moving part experiences the same
return force per unit mass per unit displacement and that all moving parts
oscillate with the same time dependence cos (wt + @), i.e., with the same
frequency « and the same phase constant ¢.

Fach of the systems that we shall study is described by some physical
quantity whose displacement from its equilibrium value varies with position
in the system and time. In the mechanical examples (involving moving
parts which are point masses subject to return forces), the physical quantity
is the displacement of the mass at the point x,y,z from its equilibrium posi-
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tion. The displacement is described by a vector §{(x,y,x,t). Sometimes we
call this vector function of x, y, z, { a wave function. (It is only a contin-
uous function of x, y, and z when we can use the continuous approxima-
tion, i.e., when near neighbors have essentially the same motion.) In some
of the electrical examples, the physical quantity may be the current in a
coil or the charge on a capacitor. In others, it may be the electric field
E(x,y.z,t) or the magnetic field B(x,y,z,t). In the latter cases, the waves are
called electromagnetic waves,

1.2 Free Oscillations of Systems with One Degree of Freedom

‘We shall begin with things that stay in one vicinity, oscillating or vibrating
about an average position. Such simple systems as a pendulum oscillating
in a plane, a mass on a spring, and an LC circuit, whose configuration at
any time can be completely specified by giving a single quantity, are said
to have one degree of freedom—loosely speaking, one moving part (see
Fig. 1.1). For example, the swinging pendulum can be described by the
angle that the string makes with the vertical, and the LC circuit by the
charge on the capacitor. (A pendulum free to swing in any direction, like
a bob on a string, has not one but two degrees of freedom,; it takes two co-
ordinates to specify the position of the bob. The pendulum on a grand-
father clock is constrained to swing in a plane, and thus has only one de-
gree of freedom.)

For all these systems with one degree of freedom, we shall find that the
displacement of the “moving part” from its equilibrium value has the
same simple time dependence (called harmonic oscillation),

Yty = A cos (wt + ). (1)

For the oscillating mass, ¢ may represent the displacement of the mass from
its equilibrium position; for the oscillating LC circuit, it may represent the
current in the inductor or the charge on the capacitor. More precisely, we
shall find Eq. (1) gives the time dependence provided the moving part does
not move too far from its equilibrium position. [For large-angle swings of
a pendulum, Eq. (1) is a poor approximation to the motion; for large exten-
sions of a real spring, the return force is not proportional to the extension,
and the motion is not given by Eq. (1); a large enough charge on a capaci-
tor will cause it to “break down” by sparking between the plates, and the
charge will not satisfy Eq. (1).]

Nomenclature. We use the following nomenclature with Eq. (1): Aisa
positive constant called the amplitude; w is the angular frequency, measured
in radians per second; » = /27 is the frequency, measured in cycles per

Fig. 1.1 Systems with one degree of
freedom. (The pendulum is constrained
to swing in a plane.)
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second, or hertz (abbreviated cps, or Hz). The inverse of v is called the
period T, which is given in seconds per cycle:

1
= — 2
L @
The phase constant ¢ corresponds to the choice of the zero of time. Often
we are not particularly interested in the value of the phase constant. In
these cases we can always “reset the clock,” so that ¢ becomes zero, and
then we write ¢ = A cos wf or ¢ = A sin wt, instead of the more general

Eq. (1).

Return force and inertia. The oscillatory behavior represented by Eq. (1)
always results from the interplay of two intrinsic properties of the physical
system which have opposite tendencies: return force and inertia. The “re-
turn force” tries to return ¢ to zero by imparting a suitable “velocity”
dy/dt to the moving part. The greater ¢ is, the stronger the return force.
For the oscillating LC circuit, the return force is due to the repulsive force
between the electrons, which makes the electrons prefer not to crowd onto
one of the capacitor plates, but rather to distribute themselves equally on
each plate, giving zero charge. The second property, “inertia,” “opposes”
any change in dy,/dt. For the oscillating LC circuit, the inertia is due to
the inductance L, which opposes any change in the current dy/dt (letting
y stand for the charge on the capacitor).

Oscillatory behavior. 1f we start with { positive and dy/dt zero, the re-
turn force gives an acceleration which induces a negative velocity. By the
time y returns to zero, the negative velocity is maximum. The return force
is zero at ¢ = 0, but the negative velocity now induces a negative displace-
ment. Then the return force becomes positive, but it must now overcome
the inertia of the negative velocity. Finally, the velocity di/dt is zero, but
by that time the displacement is large and negative, and the process reverses.
This cycle goes on and on: the return force tries to restore ¥ to zero; in so
doing, it induces a velocity; the inertia preserves the velocity and causes ¢
to “overshoot.” The system oscillates.

Physical meaning of w2 The angular frequency of oscillation w is related
to the physical properties of the system in every case (as we shall show) by
the relation

w? = return force per unit displacement per unit mass. (3)

Sometimes, as in the case of the electrical examples (LC circuit), the “iner-
tial mass” may not actually be mass.
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Damped oscillations.  If left undisturbed, an oscillating system will con-
tinue to oscillate forever in accordance with Eq. (1). However, in any real
physical situation, there are “frictional,” or “resistive,” processes which
“damp” the motion. Thus a more realistic description of an oscillating
system is given by a “damped oscillation.” If the system is “excited” into
oscillation at ¢ = 0 (by giving it a bump or closing a switch or something),
we find (see Vol. I, Chap. 7, page 209)

Y(t) = Ae V% cos (et + @), 4)

for t = 0, with the understanding that  is zero for t < 0. For simplicity
we shall use Eq. (1) instead of the more realistic Eq. (4) in the examples
that follow. We are thus neglecting friction (or resistance in the case of
the LC circuit) by taking the decay time 7 to be infinite.

Example 1: Pendulum

A simple pendulum consists of a massless string or rod of length I attached
at the top to a rigid support and at the bottom to a “point” bob of mass M
(see Fig. 1.2). Let  denote the angle (in radians) that the string makes
with the vertical. (The pendulum swings in a plane; its configuration is
given by y alone.) The displacement of the bob, as measured along the
perimeter of the circular arc of its path, is . The corresponding instan-
taneous tangential velocity is I dy/dt. The corresponding tangential
acceleration is [ d?y/dt?. The return force is the tangential component of
force. The string does not contribute to this force component. The
weight Mg contributes the tangential component —Mg siny. Thus New-
ton’s second law (mass times acceleration equals force) gives

Midzy ,
= — Mg sin J(t). (5)
We now use the Taylor’s series expansion [Appendix, Eq. (4)]
0 — vy
smzp—ylf—a+§---', (6)

where the ellipsis (- - -) denotes the rest of the infinite series. We see that
for sufficiently small { (in radians, remember), we can neglect all terms in
Eq. (6) except the first one, ¢. You may ask, “How small is ‘sufficiently
small’®™ That question has no universal answer—it depends on how accu-
rately you can determine the function (f) in the experiment you have in
mind (this is physics, remember—nothing is perfectly measurable) and on
how much you care. For example, for ¢ = 0.10 rad (5.7 deg), sin ¢ is
0.0998; in some problems “0.0998 = 0.1000” is a poor approximation. For
Y = 1.0 rad (57.3 deg), sin ¢ is 0.841; in some problems “0.8 = 1.0” is an
adequate approximation.

Fig. 1.2 Simple pendulum.



Fig. 13  Longitudinal oscillations.
{a) Springs relaxed and unattached.
(b) Springs attached, M at equilibrium
position. (c) General configuration.
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If we retain ounly the first term in Eq. (6), then Eq. (5) takes on the form

2y
= "

where
o =4 ®

The general solution of Eq. (7) is the harmonic oscillation given by
Y(t) = A cos (wt + ¢).

Note that the angular frequency of oscillation, given by Eq. (8), can be
written

«? = return force per unit displacement per unit mass:

- Mgb g
CE=TM T T

using the approximation that sin ¥ equals .

The two constants A and ¢ are determined by the initial conditions, i.e.,
by the displacement and velocity at time ¢ = 0. (Since y is an angular dis-
placement, the corresponding “velocity” is the angular velocity dy,/dt.)
Thus we have

Yt) = A cos (wt + ),
i) E_"_‘%ﬁ = —wA sin (of + @),

so that
Y0) = A cos g,
q'/(O) = —wA sin @.

These two equations may be solved for the positive constant A and for
sin ¢ and cos @ (which determine g).

Example 2: Mass and springs—longitudinal oscillations

Mass M slides on a frictionless surface. It is connected to rigid walls by
means of two identical springs, each of which has zero mass, spring con-
stant K, and relaxed length ap. At the equilibrium position, each spring is
stretched to length a, and thus each spring has tension K(a — ao) at equi-
librium (see Fig. 1.3a and b). Let z be the distance of M from the left-hand
wall.  Then its distance from the right-hand wall is 2a — z (see Fig. 1.3¢).
The left-hand spring exerts aforce K(z — ap) in the —z direction. The
right-hand spring exerts a force K(2a — z — ap) in the +z direction. The
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total force F, in the +z direction is the superposition (sum) of these two
forces:

F, = —K(z — ao) + K(2a — z — ay)

= —2K(z — a).
Newton's second law then gives
M d?z
The displacement from equilibrium is z — a. We designate this by J(t):
Y= — a
then
2y _ d%
dee — de2’
Now we can write Eq. (9) in the form
a2y
W = —0324” (10)
with
2K
2 o 28
W =20 (11)

The general solution of Eq. (10} is again the harmonic oscillation
Y = A cos (wt + ¢). Note that Eq. (11) has the form w? = force per unit
displacement per unit mass, since the return force is 2Ky for a displace-
ment .

Example 3: Mass and springs—transverse oscillations

The system is shown in Fig. 1.4. Mass M is suspended between rigid sup-
ports by means of two identical springs. The springs each have zero mass,
spring constant K, and unstretched length ao. They each have length a at
the equilibrium position of M. We neglect the effect of gravity. (Gravity
does not produce any return force in this problem. It does cause the sys-
tem to “sag,” but that does not affect the results in the order of approxima-
tion that we are interested in.) Mass M now has three degrees of freedom:
It can move in the z direction (along the axis of the springs) to give “longi-
tudinal” oscillation. That is the motion we considered above, and we need
not repeat those considerations. It can also move in the x direction or in
the y direction to give “transverse” oscillations. For simplicity, let us con-
sider only motion along x. 'We may imagine that there is some frictionless
constraint that allows complete freedom of motion in the transverse x di-
rection but prevents motion along either y or z. (For example, we could



Fig. 14 Transverse  oscillations.
(a) Equilibrium configuration. (b) Gen-
eral configuration (for motion along x).
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drill a hole through M and arrange a frictionless rod passing through the
hole, rigidly attached to the walls, and oriented along x. However, you
can easily convince yourself that such a constraint is unnecessary. From
the symmetry of Fig. 1.4, you can see that if at a given time the system is
oscillating along x, there is no tendency for it to acquire any motion along
y or z. The same circumstance holds true for each of the other two de-
grees of freedom: no unbalanced force along x or y is developed due to
oscillation along z, nor along x or = due to oscillation along y.)

At equilibrium (Fig. 1.4a), each of the springs has length a and exerts a
tension Ty, given by

To = K(a — agp). (12)
In the general configuration (Fig, 1.4b), each spring has length [ and tension
T = K(I — ay). (13)

This tension is exerted along the axis of the spring. Taking the x compo-
nent of this force, we see that each spring contributes a return force T'sin &
in the —x direction. Using Newton’s second law and the fact that sin § is
x/1, we find

d2x

M—=
di?

=F, = —2Tsin@

= —2K( - a0) = —2Kx(l _ 919-) (14
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Equation (14) is exact, under our assumptions (including the assumption,
expressed by Eq. (13), that the spring is a “linear” or “Hooke’s law” spring).
Notice that the spring length I which appears on the right side of Eq. (14)
is a function of x. Therefore Eq. (14} is not exactly of the form that gives
rise to harmonic oscillations, because the return force on M is not exactly
linearly proportional to the displacement from equilibrium, x.

Slinky approximation. There are two interesting ways in which we can
obtain an approximate equation with a linear restoring force. The first way
we shall call the slinky approximation, in which we neglect ao/a compared
tounity. Hence, since ! is always greater than a, we neglect ay/1 in Eq. (14).
[A slinky is a helical spring with relaxed length ao about 3 inches. It can
be stretched to a length a of about 15 feet without exceeding its elastic
limit. That would give ag/a < 1/60 in Eq. (14).] Using this approxima-
tion, we can write Eq. (14) in the form

%25 = —w, (15)
with
, 2K
o = m;;m = %ZTE (For ao = 0). (16)

This has the solution x = A cos (wt + @), i.e., harmonic oscillation. Notice
that there is no restriction on the amplitude A. We can have “large” oscil-
lations and still have perfect linearity of the return force. Notice also that
the frequency for transverse oscillations, as given by Eq. (16), is the same
as that for longitudinal oscillations, as given by Eq. (11). That is not true
in general. It holds only in the slinky approximation, where we effectively
take g9 = 0.

Small-oscillations approximation. If ay cannot be neglected with respect
to a (as is the case, for example, with a rubber rope under the conditions
ordinarily met in lecture demonstrations), the slinky approximation does
not apply. Then F; in Eq, (14) is not linear in x. However, we shall show
that if the displacements x are small compared with the length a, then !
differs from a only by a quantity of order a(x/a)?. Inthe small-oscillations
approximation, we neglect the terms in F, which are nonlinear in /a. Let
us now do the algebra: We want to express I in Eq. (14) as | = a + some-
thing, where “something™ vanishes when x = 0. Since [ is larger than a,
whether a is positive or negative, “something” must be an even function
of x. In fact we have from Fig. 1.4

2] — A
=G( +€), C:F.



10  Free Oscillations of Simple Systems

Thus
1_
7=

Q[

(1 4 g

@@l w

where we have used the Taylor’s series expansion [Appendix Eq. (20)] for
(1 4+ x)» with n = —% and x = ¢. Next we make the small-oscillations
approximation. We assume we have ¢ € 1 and discard the higher-order
terms in the infinite series of Eq. (17). (Eventually we shall drop every-
thing except the first term, 1/a.) Thus we have

b2l 3]

- ()

Inserting Eq. (18) into Eq. (14), we find
Bx_ gy )

de? M {
_ _ 2Kx _22[ _(..1..3.‘..2.) . ]}
- M { a ,,1 2 a? +
- _2K .. _ K. (V. ...
= -Ma(a ag)x + Man(a) + . (19)

Discarding the cubic and higher-order terms, we obtain

ﬂ‘*’__z_.&(a__a)x— ____,_2T0x
diz ™ Ma o= )

(20)

[In the second equality of Eq. (20), we used Ty as given by Eq. (12).]
Equation (20) is of the form

% = — w2,
1t
with
o = % 1)

Therefore (1) is given by the harmonic oscillation
x(t) = A cos (wt + ).

Notice that «? given by Eq. (21) is the return force per unit displacement
per unit mass: for small oscillations, the return force is the tension Ty times
sin 6, which is x/a, times two (two springs). The displacement is x; the
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mass is M. Thus the return force per unit displacement per unit mass is
2To{x/a)/xM.

Notice that the frequency for transverse oscillations is given by w? =
2To/Ma for both the case of the slinky approximation (@p = 0) and the
small-oscillations approximation (x/a < 1), as we see by comparing Eqgs.
(16} and (21). In the slinky approximation, the longitudinal oscillation also
has this same frequency, as we see from Eqs. (11) and (16). If the slinky
approximation does not hold (i.e., if ap/a cannot be neglected), then the
longitudinal oscillations and (small) transverse oscillations do not have the
same frequency, as we see from Egs. (11), (12), and (21). In this case,

‘ 2K
(©Dhong = % 22)
T,
() = M;’ , T = K(a — ay). (23)

Thus for small oscillations of a rubber rope (where ao/a cannot be neglected),
the longitudinal oscillations are more rapid than the transverse oscillations:

Crong 1

Otr [ B ﬁ]uz'
a

Example 4: LC circuit

(For a more complete discussion of L.C circuits, see Vol. 2, Chap. 8.) Con-
sider the series LC circuit of Fig. 1.5. The charge displaced from the bot-
tom to the top plate of the left-hand capacitor is Q. That displaced from
bottom to top of the right-hand capacitor is Q3. The electromotive force
(emf ) across the inductance is equal to the “back emf,” L dI/df. Charge
Q1 provides an electromotive force equal to C1Q;, such that positive (O
drives current in the direction of the arrow in Fig. 1.5. Thus positive Oy
gives positive L dI/dt. Similarly, from Fig. 1.5, positive Q2 gives negative
L dI/dt. Thus we have

L

d—: = C1Qr — C1Qs 24)

d

At equilibrium there is no charge on either capacitor. The charge () is
built up by the current I at the expense of the charge (1. Thus, using
charge conservation and the sign conventions of Fig, 1.5, we have

Or= =0 (25)

dQs _
d—tz =1 (26)

Fig. 1.5 Series LC circuit. The sign
conventions for Q and I are indicated.
Q1 (or Qq) is positive if the upper plate
is positive with respect to the lower plate;
I is positive if positive charge flows in
the direction of the arrows.
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Because of Egs. (25) and (26), there is only one degree of freedom. We
can describe the instantaneous configuration of the system by giving Qy, or
Q2, or I. The current I will be most convenient in our later work (when
we go to systems having more than one degree of freedom), and we shall
use it here. We first use Eq. (25) to eliminate Q4 from Eq. (24); then we
differentiate with respect to ¢ and use Eq. (26) to eliminate Qg

L4 = c10 - ¢10; = —2010

d?1 dQe
L o o2 o0y
di? dt 2c7H
Thus the current I(t) obeys the equation
L2 S
ae = ot
with
2Ct
2 2
w —, (27)

and I(t) undergoes harmonic oscillation:
I(t) = A cos (ot + ).

We can think of Eq. (27) as an illustration of the fact that w? is always
the “return force” per unit “displacement” per unit “inertia.” We can
take the “return force” to be the electromotive force 2C-1Q, where Q is
the “charge displacement” Q.. We then take the self-inductance L to be
the “charge inertia.” Then the return force per unit displacement per unit
inertia is (2C1Q)/ QL.

You may have noticed a mathematical parallelism between Examples 2,
3, and 4. We purposely gave these examples the same spatial symmetry
(“inertia” in the center, “driving forces” located symmetrically on either
side) so as to produce the parallelism. Such parallelisms are often useful as
mnemonic devices.

1.3 Linearity and the Superposition Principle

In Sec. 1.2 we solved for the oscillations of the pendulum and of the mass
and springs only for the cases where we could assume the return force to
be proportional to —v, with (for example) no dependence on 2, 3, etc.
A differential equation that contains no higher than the first power of ¥, of
di/dt, of d*}/di2, etc., is said to be linear in + and its time derivatives. If,
in addition, no terms independent of Y occur, the equation is said to be
homogeneous as well. If any higher powers of y or its derivatives occur in
the equation, the equation is said to be nonlinear. For example, Eq. (5) is
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nonlinear, as we can see from the expansion of sin y given by Eq. (6). Only
when we neglect the higher powers of  do we obtain a linear equation.

Nonlinear equations are generally difficult to solve. (The nonlinear pen-
dulum equation is solved exactly in Volume 1, pp. 225 ff.) Fortunately,
there are many interesting physical situations for which linear equations
give a very good approximation. We shall deal almost entirely with linear
equations.

Linear homogeneous equations. Linear homogeneous differential equa-
tions have the following very interesting and important property: The sum
of any two solutions is itself a solution. Nonlinear equations do not have
that property. The sum of two solutions of a nonlinear equation is not it-
self a solution of the equation.

We shall prove these statements for both cases (linear and nonlinear) at
once. Suppose that we have found the differential equation of motion of
a system with one degree of freedom to be of the form

1)

T = O B (28)

as we found, for example, for the pendulum [Egs. (5) and (6)] or for the
transverse oscillations of a mass suspended by springs [Eq. (19)]. If the
constants &, 3, v, etc. are all zero or can be taken to be zero as a sufficiently
good approximation, then Eq. (28) is linear and homogeneous. Otherwise,
it is nonlinear. Now suppose that 1(f) is a solution of Eq. (28) and that
Yo(t) is a different solution. For example, y; may be the solution corre-
sponding to a particular initial displacement and initial velocity of a pendu-
Ium bob, and > may correspond to different initial displacement and ve-
locity. By hypothesis y; and i3 each satisfy Eq. (28). Thus we have

dg‘h__cp 2 3 14 2
g = O adn® B vt 4 (29)
and
d2¢2__c¢ +a¢2+3¢3+ .4,4+... (‘30)
dt2 - 2 2 2 Yvy2 . .

The question of interest to us is whether or not the superposition of y; and
Y2, defined as the sum () = ¥1(t) + Y=(t), satisfies the same equation of
motion, Eq. (28). Do we have

dz__.m....@:i tj Vo) o Clfa + o) + aldn + 4% + Bl + da + P (31)

The question (31) has the answer “yes” if and only if the constants «, 8,
etc. are zero. That is easily shown as follows. Add Egs. (29) and (30).
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The sum gives Eq. (31) if and only if all the following conditions are
satisfied:

Py dy P+ Y

d;i e~ wdt? “, (32)
—C1 — G = —Cl1 + o), (33)
afr® + afe? = alfn + ¥2)% (34)
Bid + Bi2® = Bldr + )3 et (35)

Equations (32) and (33) are both true. Equations (34) and (35) are not true
unless a and B are zero. Thus we see that the superposition of two solu-
tions is itself a solution if and only if the equation is linear.

The property that a superposition of solutions is itself a solution is unique
to homogeneous linear equations. Oscillations that obey such equations are
said to obey the superposition principle. 'We shall not study any other kind.

Superposition of initial conditions. As an example of the applications of
the concept of superposition, consider the motion of a simple pendulum
under small oscillations. Suppose that one has found a solution {; corre-
sponding to a certain set of initial conditions (displacement and velocity)
and another solution y» corresponding to a different set of initial conditions.
Now suppose we prescribe a third set of initial conditions as follows: We
superpose the initial conditions corresponding to ¢y and y». That means
that we give the bob an initial displacement that is the algebraic sum of the
initial displacement corresponding te the motion Y4(t) and that correspond-
ing to {»(t), and we give the bob an initial velocity that is the algebraic sum
of the two initial velocities corresponding to ¥ and y2. Then there is no
need to do any more work to find the new motion, described by {5(t). The
solution ;3 is just the superposition Y1 + 2. We let you finish the proof.
This result holds only if the pendulum oscillations are sufficiently small so
that we can neglect the nonlinear terms in the return force.

Linear inhomogeneous equations. Linear inhomogeneous equations (i.e.,
equations containing terms independent of ¥/} also give rise to a superposi-
tion principle, though of a slightly different sort. There are many physical
situations analogous to a driven harmonic oscillator, which satisfies the
equation

MPy(t) _

Sl = —CU) + Flt), (36)

where F(t) is an “external” driving force that is independent of (). The
corresponding superposition principle is as follows: Suppose a driving force
F1(t) produces an oscillation 4 (t) (when F; is the only driving force), and
suppose another driving force Fa(t) produces an oscillation y»(t) [when Fy(f)
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is present by itself]. Then, if both driving forces are present simultaneously
[so that the total driving force is the superposition Fy(t) + Fz(t)], the corre-
sponding oscillation [i.e., corresponding solution of Eq. (36)] is given by the
superposition (t) = Ya(t) + Y2(f). We leave it to you to show that this is
true for the linear inhomogeneous Eq. (36) and not true for an equation
nonlinear in (). (See Prob. 1.16.)

The systems we dealt with in Sec. 1.2 and our illustrations of the super-
position principle in this section have all been systems of one degree of
freedom. However, the superposition principle is applicable to systems of
any number of degrees of freedom (when the equations are linear), and we
shall be using it very often, usually without mentioning its name.

Example 5: Spherical pendulum

To illustrate the application of the superposition principle when we have
two degrees of freedom, we consider the motion of a pendulum consisting
of a bob of mass M on a string of length I. The pendulum is free to swing
in any direction and is called a spherical pendulum. At equilibrium the
string is vertical, along z, and the bob is at x = y = 0. For displacements
x and y that are sufficiently small, you can easily show that x() and y(t)
satisty the differential equations

d?x Mg
d2y Mg

These two equations are “uncoupled,” by which we mean that the x com-
ponent of force depends only on x, not on ¥, and vice versa. Thus Eq. (37)
does not contain y, and similarly Eq. (38) does not contain x. Equations
(37) and (38) can be solved independently to give

x(f) = Ay cos (ot + @1) (39)
y(t) = Az cos (ot + @2), (40)
with
P

R
where the constants A,, Aj, ¢, and g, are determined by the initial con-
ditions of displacement and velocity in the x and y directions. The com-
plete motion can now be thought of as a superposition of the motion Xx(f)
and the motion yy(t), where % and ¥ are unit vectors. The power of the
superposition principle lies in the fact that we can solve for the x and y
motions separately and then merely superpose the two motions to get the
complete motion involving both degrees of freedom.



