Chapter 2 Free Oscillations of Systems with Many Degrees
of Freedom

2.1 Introduction

In Chap. 1 we studied oscillations of systems having one or two degrees of
freedom. In this chapter we shall study systems having N degrees of free-
dom, where N can range up to some very large number, which we shall
loosely call “infinity.”

For a system with N degrees of freedom, there are always exactly N
modes (see Prob. 1.17). Each mode has its own frequency w and its own

“shape’” given by the amplitude ratios A:B:C:D:. .. etc., corresponding to

the degrees of freedom @, b, ¢, d, . .., ete. In each mode, all moving parts
go through their equilibrium positions simultaneously; that is, every degree
of freedom oscillates in that mode with the same phase constant. Thus
there is a single phase constant for the entire mode, which is determined by
the initial conditions. Since each degree of freedom oscillates in a given
mode with the same frequency w, each moving part experiences the same
return force per unit displacement per unit mass, given by w2

As an example, suppose we have a system with four degrees of freedom
a, b, ¢, d. Then there are four modes. Suppose that in mode 1 the am-
plitude ratios are

A:B:C:D=1:0:.-2:7.

Then the motions of 4, b, ¢, and d (if mode 1 is the only excited mode) are
given by

Va = Ay cos (w1t + 1), ¥ = 0, Yo = —24q, Ya = T,

where A; and ¢, depend on the initial conditions.

If a system contains a very large number of moving parts, and if these
parts are distributed within a limited region of space, the average distance
between neighboring moving parts becomes very small. As an approxima-
tion, one may wish to think of the number of parts as becoming infinite and
the distance between neighboring parts as going to zero. One then says
that the system behaves as if it were “continuous.” Implicit in this point
of view is the asswumption that the motion of near neighbors is nearly the
same. This assumption allows us to describe the vector displacement of
all the moving parts in a small neighborhood of a point x, y, 2, with a single
vector quantity ¥(x,1,3,t). Then the “displacement” ¥(x,y,2,t) is a contin-
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uous function of position, x, y, z, and of time ¢. It replaces the description
using the displacements Yq(f), ¥s(t), etc., of the individual parts. We then
say we are dealing with waves.

Standing waves are normal modes. The modes of a continuous system
are called standing waves, or normal modes, or simply modes. According
to the discussion above, a truly continuous system has an infinite number
of independent moving parts, although they occupy a finite space. There
are therefore an infinite number of degrees of freedom, and hence an infi-
nite number of modes. This is not literally true for a real material system.
One liter of air does not contain an infinite number of moving parts, but
only 2.7 X 1022 molecules, each of which has three degrees of freedom (for
motion along x, y, and z directions). Thus a bottle containing 1 liter of air
does not have an infinite number of possible vibrational modes of the air,
but only 8 X 1022 at most. Anyone who has practiced blowing a bottle or
a flute knows that it is not easy to excite more than the first few modes.
(We usually distinguish the modes by calling the one with the lowest fre-
quency number 1, the next higher number 2, etc.) In practice we are
often concerned only with the first few (or few dozen or few thousand)
modes. As we shall see, it turns out that the lowest modes behave as if the
system were continuous,

The most general motion of a system can be written as a superposition
of all its modes, with the amplitude and phase constant of each mode set
by the.initial conditions. The appearance of the vibrating system in such
a general situation is very complicated, simply because the eye and brain
cannot contemplate several things at once without confusion. It is not easy
to look at the complete motion and “see” each mode separately when
many are present.

Modes of beaded string. 'We study first the transverse oscillations of beaded
strings. By “strings” we shall really mean springs. We will assume that
we have linear (i.e., Hooke’s law) massless springs connecting point masses
M. (In our figures, we will draw the springs as straight lines rather than
as helices.)

In Fig. 2.1 we exhibit a sequence of systems of beaded strings. The
first system has N = 1 (one degree of freedom), the next N = 2, etc. In
each case, we exhibit without proof the configurations of the normal modes.
Later we shall derive the exact configuration and frequency for each mode.

It should already be possible for you to see (assuming the configurations
shown are those of the modes) that we have correctly ordered the configu-
rations in order of ascending mode frequency. That is because the strings



Fig, 2.1 Transverse vibrational modes
of a beaded string. A string with N
beads has N modes. In mode m the
string crosses the equilibrium axis
m — 1 times and has m half-wavelengths.
The highest frequency mode is the “zig-
zag” configuration shown.
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make increasingly large angles with the equilibrium axis as we increase the
mode number (taking the displacement of a given bead to be the same).
Consequently the return force per unit displacement per unit mass for a
given bead in a given system increases when we go from one configuration
to the next, and therefore so does the mode frequency.

Another thing that is apparent is that our sequence of assumed mode
shapes always gives exactly N configurations: the first mode always has
zero “‘nodes” (places where the string crosses the axis, excluding the end
points), the second has one node, etc. The highest mode always has the
largest possible number of nodes, namely N — 1, which is achieved by “zig-
zagging” up and down, i.e., crossing the axis once between each two suc-
cessive masses.

2.2 Transverse Modes of Continuous String

We now consider the case where N is huge, say N = 1,000,000 or so.
Then for the lowest modes (say the first few thousand), there are a very
large number of beads between each node. Thus the displacement varies
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slowly from one bead to the next. [We shall not consider here the highest
modes, since they approach the “zigzag limit,” where a description using a
continunous function Y(x,y,z,t) is not possible.] Therefore, in accordance
with the remarks above, we shall not describe the instantaneous configura-
tion by the list of displacements ¥,(t), ¥(t), Ye(t), Ya(t), ete., of each bead.
Instead we consider all the particles with equilibrium positions in the
neighborhood of the point x,y,z (a neighborhood being an infinitesimal cube,
if you wish, with edges of length Ax, Ay, and Az) as having the same instan-
taneous vector displacement (x,y,z,1):

Yxy.nt) = Rdxyat) + u(xy.at) + 2y, ¢y

where %, 9, and Z are unit vectors and ., ¥, and v, are the components
of the vector displacement 4. It is important to realize that x,y,z label the
equilibrium position of the particles in that neighborhood. Thus x,4,z are
not functions of time.

Longitudinal and transverse vibration. Equation (1) is of a much more
general form than we need in order to study the vibrations of a string, Sup-
pose that at equilibrium the string is stretched along the z axis. Then the
coordinate z is sufficient to Iabel the equilibrium position of each bead (to
an accuracy Az) and Eq. (1) can be written in the simpler form

Yat) = Ra(zt) + P(z) + Wu(at). @

Vibrations along the z direction are called longitudinal vibrations. Vibra-
tions along the x and y directions are called transverse vibrations. At
present we wish to consider only the transverse vibrations of the string,
Therefore we assume 4, is zero:

Uat) = Rafzd) + Pulat). 3)

Linear polarization.  As a further simplification, we assume that the vibra-
tions are entirely along X (i.e., y5, = 0). The vibrations are then said to be
linearly polarized along ®. (In Chap. 8 we shall study general states of
polarization.) Now we can drop the unit vector % and the subscript on ¢,
from the notation:

Y(z,1) = instantaneous transverse displacement of )
particles having equilibrium position z.

Now consider a very small segment of the continuous string. At equi-
librium, the segment occupies a small interval of length Az centered at z.
The mass AM of the segment divided by the length Az is defined as the
mass density po, measured in units of mass per unit length:

AM = po Az, (5)



Fig. 22 Transverse oscillations of a
continuous string. At bottom is the equi-
librium position of an infinitesimal seg-
ment along the z axis. Above is a general
position and configuration of the same
segment.
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The mass density is assumed to be uniform along the string. The string
tension at equilibrium, denoted by Ty, is also assumed to be uniform,

For a general (nonequilibrium) situation, the segment has a transverse
displacement (z,t), averaged over the segment. (See Fig. 2.2.) The seg-
ment is no longer exactly straight; it has (generally) a slight curvature.
This is indicated in Fig. 2.2 by the fact that ¢, and 6, are not equal. The
tension in the segment is no longer Ty, since the segment is longer than its
equilibrium length Az, Let us find the net force F; on the segment at the
instant shown. At its left end, the segment is pulled downward with a
force Ty sin f;. At its right end, it is pulled upward with a force T3 sin .
Thus the net force upward is

Fw(t) =T sin G, — Ty sin 04, (6)
We want to express [,(f) in terms of y(z,f) and its space derivative
@%“tl = slope of string at position z at time £. (7)
[4)
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According to Fig. 2.2, the string slope at z; is tan ¢, and the slope at z is
tan ;. Also, Ty cos 6, is the horizontal component of the string tension at
z1, and T, cos 0 is the horizontal component at z2. Now, we want even-
tually to obtain a linear differential equation of motion. To this end, we
shall assume that we can use either the slinky approximation or the small-
oscillations approximation. In the slinky approximation, T is larger than
To by a factor 1/cos §, because the segment is longer than Az by a factor
1/cos 8. Therefore Tcos# = T;. In the small-oscillations approximation,
we neglect the increase in length of the segment, and we also approximate
cos @by 1. Thus we have T cos § = Tpin that case also. Then Eq. (6) gives

Fa;(t) = Tosinfs; — T sin &
= T3 cos Bz tan 05 — Ty cos 0] tan 64

= Totan§s — Tptan &

- ) (%), .

Now consider the function f{z) defined by

oY(z:t)
= —— 9
fia) = SHE ©)
where we have suppressed the variable ¢ in writing f{z) because we intend

to hold ¢ constant. We expand f{z) in a Taylor’s series around z; and then
set z = z;. [See Appendix Eq. (3)]:

flzz) = flz1) + (32 — 31)(%)1 + %‘(Zz - z1)2(—3§2i)1 + oo, (10

where z2 — 2 = Az, according to Fig. 2.2. We now go to the limit in
which Az is small enough so that we can neglect quadratic and higher terms
in Eq. (10). Then we write
oy = aef ) = s (20
flze) = i) = 8a( L) = A (22
= e (24450)
0z 0%
0%z 1)
= Az—12 1
L) (11)
Notice that in arriving at Eq. (11) we dropped the subscript 1. That is be-
cause it does not matter where in the interval Az we evaluate the z deriva-
tive, since we are neglecting higher derivatives in the Taylor’s series, Eq.

(10). Notice also that we must write the space derivative as a partial de-
rivative once we use the notation y(z,¢).
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We can now use Eqs. (9) and (11) in Eq. (8) to obtain for the net force
on the segment the result

Ft) = T Az%ﬁ. (12)

We now use Newton’s second law. The force F,, as given by Eq. (12),
equals the mass AM of the segment times the acceleration of the segment.
The velocity and acceleration of the segment with equilibrium position z
are expressed in terms of Y(z,f) and its derivatives as follows:

Y(z,t) = displacement

Ozt = velocity (13)
ot

2,

%Y (z.t) = acceleration.
o2

Thus Newton’s law [with AM = py Az] gives

=AY

2.
po Az 2

i.e.,

el _ To 2%z
oz £o 072

(14)

Classical wave equation. FEquation (14) is a very famous second-order
linear partial differential equation. It is called the classical wave equation.
We will encounter it often and will eventually know many of the proper-
ties of its solutions and the physical situations where it occurs. (Of course
the positive constant To/pp is special to the string. In other physical
applications, some other positive constant appears in its place in the wave
equation.)

Standing waves. We are trying to find the normal modes—the standing
waves—of a continuous string. Therefore we assume that we have a
mode. We assume that all parts of the string oscillate in harmonic motion
at the same angular frequency « and with the same phase constant ¢.
Thus y(z,t), which is the displacement of string particles with equilibrinm
position z, should have the same time dependence, cos(wt + ¢} for all
particles, i.e., for all z.  As usual, the phase constant ¢ corresponds to the
“turn-on time” of the mode. The “shape” of a mode made up of discrete
degrees of freedom labeled a, b, ¢, etc., is given by the relative vibration
amplitudes, A, B, C, etc. In the present case of a continuous string, where
the (infinitely many) degrees of freedom are labeled by the parameter z,
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the amplitude of vibration of the degrees of freedom at z (i.e., in a small
neighborhood of z) can be written as a continuous function of z denoted
by A(z). The shape of A(z) as a function of z depends on the mode; that
is, each mode has a different A(z). Thus we can write down the general
expression for a standing wave:

Y(z,t) = A(z) cos (wt + ). (15)
The acceleration corresponding to Eq. (15) is
2
% = —wh) = —w?A(z) cos (wt + @) (16)

The second partial derivative of Eq. (15) with respect to z is
ey 02[A(z) cos (wt + )]

2z2 022

= cos (wt + @) dszzgz) ) (17)

where we have an ordinary derivative with respect to z rather than a par-
tial derivative because A(z) has no time dependence. Inserting Egs. (16)
and (17) into Eq. (14) and canceling the common factor cos (ot + @), we
obtain

2
d d‘iﬁ"') = —w? PT_‘;A(z). (18)
Equation (18) governs the shape of the mode. Since each mode has a dif-
ferent angular frequency , and since «? appears in Eq. (18), we see that
different modes have different shapes, as expected.
Equation (18) is of the form of the differential equation for harmonic os-
cillation, but for oscillation in space rather than in time. The general
form of a harmonic oscillation in space can be written

A®) = Asin (2«:%) + B cos (2-.:: %) (19)
where the constant A represents the distance over which one complete
oscillation occurs.  Thus it is called the wavelength. It is the parameter
for oscillations in space analogous to the period T for oscillations in time.
The wavelength A is measured in units of centimeters per cycle (i.e., per
cycle of spatial oscillation along z), or simply in centimeters.

To see how to adapt this solution to Eq. (18), differentiate Eq. (19) twice:

d;‘:gz) = _(-%Az)zA(z). (20)
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Then comparing Eqgs. (18) and (20), we see that we need to have

27 \? Po) Po
2TV = w222 = gmz 22 2
(?\) w(ﬂ] (27v) Ty’ en
ie.,
/To
Av = /— = vy = constant. (22)
Voo

Wave velocity. Equation (22) gives the relation between wavelength and
frequency for transverse standing waves on a continuous homogeneous
string. The constant (Tp/po)!’2 has the dimensions of velocity, since Av
has dimensions length/time. The velocity v == (Ty/po)t/2 is called the
“phase velocity for traveling waves,” for this system. (We will study
traveling waves in Chap. 4.) In our present study of standing waves, the
concept of phase velocity is not needed, because standing waves do not
“go anywhere.” They “‘stand and wave’ like a big “distributed” harmonic
oscillator. Hereafter in this chapter we shall avoid calling (Ty/po)l’? a
velocity, because we want your mental picture to be that of standing
waves.

The general solution for the displacement (z,t) of the string in a single
mode (standing wave) is obtained by combining Egs. (15) and (19):

Y(z,1) = cos (wt + @)[A sin (27z/A) + B cos (27z/A)]. (23)

Boundary conditions. Equation (23) is slightly too general. It does oot
manifest the important boundary conditions. Our vibrating string is fixed
at both ends, but we have not yet incorporated that bit of information into
the solution. We do so as follows. Suppose the string has total length L.
Let us choose the origin of coordinates so that the left-hand end of the
string is at z = 0. The right-hand end is then at z = L. Consider z = 0.
The string is fixed there, so ¥{0,t) must be zero for all . This condition re-
quires that B = 0, since, for all times ¢,

(0,2} = cos (wt + @)[0 + B] = 0. (24)
Thus we have
Wzt) = A cos (ot + @) sin—z%g. (25)

The other boundary condition is that the string be fixed at z = L, so J(L,t)
must be zero for all £. We certainly do not want to choose A = 0 in
Eq. (25), since that corresponds to the uninteresting situation of a string
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permanently at rest. The only way we can satisfy the boundary condition
at L is to have

sin 27L _ ¢ (26)
A
The only wavelengths A that can satisfy this boundary condition are those
for which the number of half-wavelengths, L, is an integer. Thus the
acceptable wavelengths must satisfy one of the following possibilities:

.27;\—1‘ =7, 27, 37, 47, 57, . . . . 27)

(Why did we exclude the case 2wL/A = 0?) This sequence of possible
ways to satisfy the boundary conditions corresponds to all the possible
modes of the string. 'We number the modes according to the sequence,
beginning with the first term in the sequence as number 1. Then accord-
ing to Eq. (27), we have the wavelengths of the modes given by

A = 2L, A2 = Ay, Az = 3, Ay =4\, oo (28)

Harmonic frequency ratios. The corresponding frequencies of the modes
are found by using Eq. (22):

(2]

"= “}\—, Vo = 2;/1, vy = 3;‘1, Vg == 41’1, « e (29)
1

The frequencies 2vy, 3ry, ete., are called the second, third, ete., harmonics
of the fundamental frequency »y. The fact that the mode frequencies vy,
v3, etc., consist of a sequence of harmonics of the lowest mode frequency
vy is a result of our assumption that the string is perfectly uniform and
flexible. Most real physical systems have mode frequencies that do not
follow this harmonic sequence of frequency ratios. For example, the
mode frequencies for a string of nonuniform mass density do not form a
sequence of harmonics of the fundamental. Instead one might have, for
example, vo = 2.78», v3 = 4.62r,, etc. For a real piano or violin string,
the mode requencies follow approximately, but not exactly, the harmonic
sequence. That is because they are not perfectly flexible. (For a qualita-
tive argument that shows how these “harmonic” frequency ratios are due
to the uniformity of the string, see Prob. 2.7.)

The modes of the string are shown in Fig. 2.3. The equilibrium con-
figuration would correspond to the missing first term, 2zL/A = 0, in the
sequence given by Eq. (27). The corresponding frequency is zero. There
is no motion, and the equilibrium state is not called a mode.

Fig. 23 Modes of continuous homo-
geneous string with fixed ends.
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Wavenumber. The inverse of the wavelength A is called the wave-
number a. Its units are cycles per centimeter or, more often, “inverse
centimeters.” It is the parameter for oscillations in space analogous to the
frequency » for oscillations in time.

o= % = wavenumber (cycles per cm). (30)

The wavenumber times 27 is called the angular wavenumber k. Its units
are radians of phase per centimeter. It is the quantity for oscillations in
space analogous to the angular frequency w for oscillations in time.

= 2}\—7" = angular wavenumber (radians per cm). (31)

We can illustrate the use of these quantities by writing the same standing
wave in several equivalent forms:

Y(zt) = Asin 217—;-; sin 277% = A sin 279t sin 2woz = A sin wtsinkz.  (32)

As another illustration, we can describe the sequence of normal modes
given by Egs. (27), (28), and (29) as follows:

kL = 7 rad, kol = 27 rad, ksL = 37 rad, ete. (33}

o1l = 1 cycle, o2L = 1 cycle, o3l = $cycle, etc. (34)

Dispersion relation. Equation (22) gives the relation between frequency
and wavelength for the normal modes of the uniform flexible string:

ﬁ 1 /To
Yy = »—_= — 0,
po A Po

Ty
00

or (multiplying by 27)

W=

k. (35)

Equation (35) gives the relation between frequency and wavenumber for
the normal modes of the string. (Note that we dropped the adjective
“angular” from the designations “angular frequency” and “angular wave-
number.” This is common practice, but the symbols and the units always
remove any ambiguity.) Such a relation, giving w as a function of k, is
called a dispersion relation. It is a convenient way of characterizing the
wave behavior of a system.
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Dispersion law for real piano string. The dispersion relation given by
Eq. (35) is extremely simple, but we shall find more complicated ones
later. For a more complicated dispersion relation, the quantity Av = w/k
is not constant, i.e., it is not independent of wavelength. For example, it
turns out that the dispersion law for a real piano string is given approxi-
mately by

2
g=b 0k (36)

where « is a small positive constant that would be zero if the string were
perfectly flexible. [In that case Eq. (36) reduces to Eq. (35).] The modes
of a real piano string have the same spatial dependence as those of a per-
fectly flexible string, i.e., Ay = 2L, Ao = 31, Ag = §A,, etc., because the
boundary conditions are the same. But the mode frequencies do not
satisfy the “harmonic” sequence vp = 2», v3 = 3p, etc., because the dis-
persion relation Eq. (36) does not give that sequence. The harmonic se-
quence is obtained only in the idealized limit where « is zero, i.e., where
we have Av = constant. For a real piano string the frequencies of the
higher modes are slightly “sharper” (i.e., have slightly higher frequencies)
than the frequencies given by the harmonic sequence.

Nondispersive and dispersive waves. Waves satisfying the simple disper-
sion relation w/k = constant are called “nondispersive waves.”” When w/k
depends on the wavelength (and hence on the frequency), the waves are
called “dispersive.” For dispersive waves, it is customary to make a plot
of & versus k. In the present example of the flexible string this plot is just
a straight line passing through the point « = k = 0 and having slope
(To/po)'"2, as shown in Fig. 2.4.

2.3 General Motion of Continuous String and Fourier Analysis

The most general state of motion of the continuous string (with both ends
fixed and for transverse vibrations along x) is given by a superposition of
all the modes, numbered 1, 2, 3, . . ., with amplitudes Ay, As, A, ..., and
phase constants ¢y, @2, @3, . . .

Yzt) = Ay sin k1z cos (w1t + 1) + Ag sin kgz cos (wat + @2) + -+, (37)

where k,, are chosen as described in the preceding section to satisfy the
boundary conditions at z = 0 and z = L, and where «, are related to k,
by the dispersion relation w(k). The amplitudes A, and phase constants
@n, Which complete the description of the motion for all positions z and
times ¢, are determined by specifying the initial conditions, namely, the
instantaneous displacement {/(xt) and the corresponding instantaneous
velocity v(z,t) = oY(z,f)/0t for each point z at t = 0.

Fig, 2.4 Dispersion relation for con-
tinuous, homogeneous, flexible string,
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Motion of string fixed at both ends. Suppose that for ¢ < 0 we constrain
the string to follow a prescribed shape f(z) by means of some sort of tem-
plate. Then, at ¢t = 0, we let the string go by suddenly removing the tem-
plate. Thus at £ = 0 each part of the string has its displacement {(z,0)
equal to f(z) and has velocity v(z,0) equal to zero. Now, the nth term in
the velocity [which is the time derivative of Eq. (37)] is proportional to
sin (wnt + @n), Which reduces to sing, at + = 0. Thus we can make
©{2,0) = 0 for all z simply by setting each phase constant g, equal either
to zero or to m. However, the phase constant ¢y = 7 (for example) is just
equivalent to a minus sign affixed to Ay, Therefore we can satisfy these
initial conditions if we set all the phase constants to zero but allow the am-
plitudes Ay, As, etc., to be either positive or negative. Thus we have, for
D(Z,O) = 0,

Y(z,t) = Ay sin kyz cos wit + Ay sin koz cos wat + - -, (38)
and, atf = 0,
Y(2,0) = flz) = Aysinkyz + Apsinkoz + -+ -, (39)
As we shall see below, Eq. (39) determines the amplitudes Ay, As, . . . .

Fourier series for function with zeros at both ends. Now, the function
f(z) can be a very general function of z. The only condition we specified
was that it was to constrain the string. Therefore, virtually all we require
of f(z) is that we have f(z} = O at z = 0 and z = L. We also require that
fiz) not be “jagged” on a “small” scale, since our wave function Y(z,t) is
supposed to be a slowly varying function of z. Therefore, f{z) must be reason-
ably smooth in order for us to be able to use it to constrain the string and
still have the string obey the differential equation that we obtained in the
“continuous” approximation. Thus we have found that any reasonable
function f(z) that vanishes at z = 0 and L can be expanded in a series of
the form of Eq. (39), i.e., as a sum of sinusoidal oscillations. Equation (39)
is called a Fourier series or Fourier expansion. It is a special example of a
Fourier series in that it applies only to functions f(z) that vanish at z = 0
and L. However, a much broader class of functions can be expressed in
appropriate Fourier expansions. We shall now find this broader class of
functions.

Our function f(z) was used to constrain the string, and therefore it was
defined only between z = 0 and L. However, the functions sin kg,
sin 2kyz, sin 3k;z, etc., that make up the infinite series of Eq. (39) are de-
fined for all z from — oo to + 0. Also, we notice that sin k12 is periodic
in z with period A;. This means it satisfies the periodicity condition, namely,
that for any given z, it must have the same value at z + A; as it does at z.
(The period A; is 2L in our example.) We notice that the function sin 2k;z
is also periodic in z with period A;. (Of course it goes through two cycles
in distance A1; it is thus periodic with period 44, as well as periodic with
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period Ay.) In fact, all the sinusoidal functions in the expansion, Eq. (39),
are periodic in z with period A;. Therefore, the expansion itself is periodic
with period A;. Thus we can broaden the class of functions which have a
Fourier expansion of the form of Eq. (39): all periodic functions F(z) with
period Ay that vanish at z = 0 and at z = $A; can be expanded in a
Fourier series of the form of Eq. (39). Given a function f{z) defined only
between z = 0 and L and vanishing at those points, we can construct a
periodic function F(z) which will have the same Fourier expansion as f{z)
by the following procedure: Between z = 0 and L, we let F(z) coincide with
f(z). Between L and 2L, we construct F(z) by making an “inverted mirror
image” of f(z} in a “mirror” located at s = L. Now that we have defined
F(z) between z = 0 and 2L, we simply repeat it in successive intervals of
length 2L to define F(z) for all z. The construction is shown in Fig. 2.5.

Fourier analysis of a periodic function of 2. 'We now broaden the class
of functions for which we can write Fourier expansions once more, as fol-
lows: Equation (39) corresponds only to functions that are periodic with
period A, and that vanish at z = 0 and $A1. However, the condition that
the function vanish at z = 0 and $A; was the result of our particular choice
of boundary conditions, namely that the string have both ends fixed. With-
out those particular boundary conditions, we would have obtained solutions
for the string vibrations which included not only the terms in sin mk;z but
also terms in cos mkiz. These functions are also periodic in z with period Ay,

Fig. 2.5 Construction of a periodic
function F(z) with period Ay = 2L from
@ function f(z) that vanishes at 2 = 0
and L. Note that F(z) salisfies the pe-
riodicity condition.
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but they do not vanish at z = 0 and $A;. (They correspond to string vibra-
tions with a free end or ends.) By including them in the series, we finally
arrive at a very general class of functions for which we can write Fourier
series: all (reasonable) periodic functions F(z) with period Ay, i.e., functions
such that F(z + A1) = F(z) for all z, can be expanded in a Fourier series of
the form
Fz) = i [A sinn 2z + B, cos n—zﬂz]
~p = = n Al + Dn }\1

= By + i Ansinng"[z + i B, cosn«z—wz
n—1i Al n=1 Al

= By + 2 A, sin nkiz + i B,, cos nkiz (40)
n=1 n=1

Finding Fourier coefficients. The process of finding the amplitudes or
Fourier coefficients By, A, and B, (for all n) for a given periodic function
F(z) is called Fourier analysis. We shall now show you how to find these
coeflicients.

First we find By as follows: We integrate both sides of Eq. (40) over any
complete period of F(z); i.e., we integrate from z = 2z to z = zg, where z1
is any value of z and where 3 = z1 + A1, The function F(z) is assumed to
be known; therefore its integral from 2, to zs, which is the integral of the
left side of Eq. (40), can be found. Now consider the integral of the right
side of Eq. (40). There are an infinite number of terms and therefore an
infinite number of integrals to consider. The first term is Bo; it produces
the integral

J:z B() dz = Bo(Zg — zl) = B(]A_l. (41)

All the other terms give zero when integrated over one period. That is
because sin nk;z and cos nkyz are as often negative as positive in any com-
plete period, and therefore they integrate to zero:

22 2z
f sin nkizdzs = 0 fz cos nkiz dz =
1

E21

Thus we have found By. It is given by
2
Bk = [ R ds (42)

Next we show you how to find A, where m is any particular value of n
in Eq. (40) from 1 to infinity. The trick is to multiply both sides of Eq. (40)
by sin mk;z and integrate both sides over one complete period of F(z). The
integral of the left-hand side can be evaluated since F(z) is known. Now
consider the integral of the right-hand side. The first term is the integral
of By times sin mk;z; that integrates to zero because it includes m complete
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periods of sin mkyz. That leaves us with the integrals of sin nk,z sin mkyz
and of cos nkyzsinmkyz for n = 1, 2,.... Consider the particular term
that has n = m. The square of sin mkyz averages to 4 over one period of
F(z) of length A (which is m complete periods of the function sin mk;z).
This gives a contribution $A,A; to the integral of the right side of Eq. (40).
All other terms contribute zero. We see that as follows: Consider for ex-
ample the integrand sin nkyz sin mkiz, for m not equal to n. This can be
written in the form

sin nkz sin mkiz = % cos (n — mykyz — % cos (n 4+ mkyz. (43)

Since n — m and n + m are integers, each of the two terms on the right
side of Eq. (43) is as often positive as negative in any complete period of
F(z) of length A;. Therefore both terms integrate to zero (except for the
case n = m which we have already considered). Similarly, the terms of the
form cos nkiz sin mkyz integrate to zero because of the identity

cos nkyz sin mkyz = 4 sin (m + n)k;z + ¥ sin (m — n)kyz.

Thus we find that
-;-A,,,Al = [ sin mhiz Fla) d= (44)

1

Similarly, we can find the coeflicients B,, by multiplying both sides of
Eq. (40) by cos mkiz and integrating over one period of length A;.  The only
nonzero contribution to the integral of the right side comes from the term
with coeflicient B,,. Thus we find that

—;-B,,,,}\l = fzz cos mkyz F(z) dz. {45)

Fourier cocefficients.  Our results are given by Egs. (40), (42), (44), and (45},
which we collect in one place for convenience of future reference:

F(z) = By + 2 A, sin mkyz + Z By, cos mkyz,
m=1 m=1
By = —1 J‘ZVFM F(z) dz,
}\1 2
9 214+ (46)
Am = — F(z) sin mkyz dz,
}\1 21
2 rrztA
B, = ?T{Ll Fz) cos mkyz dz,

where z; is any value of z.  Equations (46) tell us how to Fourier-analyze
F(z}, any periodic function of z having period A;.
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Square wave. Here is an illustrative example, the Fourier analysis of a
“square wave.” Let f{z) be zero at the points z = 0 and z = L., but let it
equal +1 for 0 <z < L. (This function has a discontinuity at z = 0 and
another at 5 = L, so that it does not satisfy the assumption in our discussion
above that it be “smooth” everywhere. Therefore we cannot reasonably
expect the Fourier series to give a perfect representation of a square wave.
It turns out that there is a sharp “overshoot spike” at = = 0 and at z = I.
for every partial sum of the series. As more and more terms are added,
the spike gets sharper, but its height does not go to zero.)

The periodic function F(z) that we construct according to the prescrip-
tion of Fig. 2.5 is given as follows: F(z) = 0 for 5 = 0; +1 for 0 < zx < L;
Oforz =L; —1for L < z < 2L; etc.; as shown in Fig. 2.6.

Fig. 2.6 Square wave f(z). Periodic
square wave F(z).

Using Egs. (46), one can easily obtain the results (Prob. 2.11) B, = 0;
By = Oforallm; A,, = Oform = 2,4, 6,8...(even integers); A, =4/m=
form =1,3,5,7,... (odd integers). Thus F(z) is given by

oc o
F(z) = By + > B, cos mkyz + > Ay, sin mkyz
m=1 m=1

= 4 [sin kiz + —.l—sin 3kiz + —stin Skiz + - }
T 3 5

Saz

i 37z
= 1.273 sin — 424 si .255 sin
sin T + 0 sin 3 + 0.255 sin Fi +
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In Fig. 2.7 are shown the square wave f{z), the first three contributing
terms given by Eq. (47), and the superposition of these first three terms.

Suppose that instead of trying to force a slinky into the configuration of
the sharp-cornered function f{z) which we have been considering, we con-
strain it at time zero to follow exactly the function

gf) = 1273 sin 7% + 0.4245in 272 4 02555 2F . (48)

This corresponds to the first three terms of Eq. (47) and is plotted in Fig.
2.7b. Now we let the slinky go at ¢ = 0. What is {(z,t)? Does the shape
remain constant as ¢ increases? (See Prob. 2.16.)

Fig. 2.7 Fourier analysis of square
wave f(z). (a) Square wave f(z) and the
first three contributions to its Fourier
decomposition. The labels 1, 3, and 5
refer to the normal modes 1, 3, 5.
(b) Square wave f(z) and the superposi-
tion fi,3.5 of its first three Fourier
components.
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Fourier analysis of a periodic function of time. Suppose we are given a
function F(#) that is defined for all ¢ and that is periodic in ¢ with period Th:

F(t + Ty) = F(t) for any ¢. (49)

We assume that F(t) can be expanded in the Fourier series

F(t) = By + Z A, sin nw t + z B,, cos nwt, (50)
w1th n=1 n=1
wp = 27y = %;11 (51)

The Fourier coeflicients can be obtained directly from our results for the
Fourier analysis of a spatially perviodic function F(z), which we studied
above. The mathematical analysis cannot distinguish the variable 6 = w;¢
from the variable § = k;z. Thus we obtain the results for the coefficients
in Egs. (50) directly from Eqgs. (46):

Bo= L [+ TR a,

T_’l t[
_ 2 ru+Ts ”
By= g L "R cos nent db, (52)

11

b+ T,
An = 2[R sin net d,
T
where the time £ is any convenient time.

Sound of a piano chord. We shall illustrate this with a superposition of
known ingredients, rather than by a Fourier analysis of a known function
F(t). Suppose you have a piano that is tuned to the “‘scientific scale.”
(See Home Exp. 2.6 if you want to know more about musical scales.) Let
vy = 128 cps. That is the note C one octave (i.e., a factor of 2 in frequency)
below middle C. Now let 3 = 3 = 384 cps. That is the G above mid-
dle C. Let v5 = 5»y = 640 cps. That is the E above the G above middle
C. Now strike all three notes at the same time. One hears a nice “open”
chord. If you strike them at exactly the same time, and if you adjust your
striking force so that the gauge pressure of air produced at your ear by the
C128 string is (in appropriate units) 1.273 sin 27v,, pressure by the G384
string is 0.424 sin 27v3t, and pressure by the E640 string is 0.255 sin 275t,
then the total air pressure p(f) at your ear is the superposition

p(t) = 1.273 sin 2av1t + 0.424 sin 27wt + 0.255 sin 27wst, (53)

But Eq. (53) is very similar to Eq. (48), which is plotted in Fig. 2.7b. All
we have to do to obtain a plot of p(t} is to change variables from kyz to w;t
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and extend the plot shown in Fig. 2.75. Thus we get the result shown in
Fig. 2.8.

If we do not strike all the keys at exactly the same time (i.e., to within
an accuracy of much less than 14z sec), the relative phases of the three notes
will not be those of Eq. (53}, and the superposition will not look like Fig.
2.8. But your ear does not notice this! Your ear (plus brain) performs a
Fourier analysis on the total pressure. That must be so, because you “hear”
the individual notes of the chord and recognize them. But the information
as to relative phase of the notes is apparently discarded or perhaps not ob-
tained. Otherwise you would notice a difference in the sound depending
on the relative phases.

The pitch-detecting device in the ear is called the basilar membrane. It
is enclosed in a fluid-filled, spiral-shaped organ in the inner ear called the
cochlea. The cochlea is mechanically coupled to the eardrum. The end
of the basilar membrane nearest the eardrum resonates at about 20,000 cps;
the end farthest from the drum resonates at about 20 cps. Thus the extreme
range of audible frequencies is about 20 cps to 20 ke. The cochlear nerve
has sensors in the basilar membrane and “transduces” the mechanical vi-
brations into electrical signals that are carried to the brain, where they are
somehow processed to become our hearing sensations. By doing the experi-
ment of hitting the chord over and over and seeing that our sensation is the

Fig. 2.8 Gauge pressure at ear due to
superposition of the notes CI28, G384,
and E640 with the relative amplitudes
and phases of Eq. (53). The period T, is
(1/128) sec.



Fig. 29 Modes of continuous string
with one fixed end and one free end.
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same [even though p(t) must have a very different shape depending on the
relative phases), we have learned that somewhere the information as to the
relative phase of the vibrations of different parts of the basilar membrane
is lost. Perhaps this information is never picked up. Perhaps the transducer
is a square-law detector, i.e., one that puts out an electrical signal propor-
tional to the square of the amplitude of vibration of the membrane. Or
perhaps the nerve signal does carry phase information [i.e., perhaps the
signal does give y(3,t) rather than {2(z,t)], but the brain does not use the
phase information, i.e., it does not form a superposition of {(z.t) from dif-
ferent nerve signals. Apparently there is not much survival value in the
phase information; otherwise in our evolutionary development we surely
would have acquired some phase-detecting mechanism.

Other boundary conditions. In the general problem of transverse vibra-
tions of a continuous string, it is not necessary that the string be fixed at
both ends. One or both ends can be “free,” at least as far as transverse
oscillations are concerned. The tension and equilibrium configuration of
the string can be maintained by a constraint in the form of a massless, fric-
tionless ring sliding on a fixed rod oriented along x, i.e., transverse to the
equilibrivim axis of the string (which we always take along z). The normal
modes will then have different configurations from those we obtained for
the string with both ends fixed. The shapes of the modes are still sinusoi-
dal functions of z, as given by Eq. (19). The dispersion relation between
frequency and wavelength is still that given by Eq. (22). In fact our entire
discussion preceding Eq. (23), the general solution for the displacement of
the string in a single mode, is independent of the boundary conditions. It
was only in the discussion following Eq. (23), that we specialized the solu-
tion to the case of the string fixed at 2 = 0 and L.

At a free end of a vibrating string, there is (by definition) no transverse
force exerted on the end of the string, i.e., the frictionless rod exerts no
transverse force on the frictionless ring. Then (by Newton’s third law) the
string and frictionless ring exert no transverse force on the frictionless rod.
That means the string must be horizontal. The slope of the string at a free
end is zero at all times. If one tries to exert a transverse force on the free
end of a string, the string moves in such a way as to reduce the force to
zero even as it is being applied. It never becomes different from zero, and
the string remains horizontal, but of course not motionless. (The moral is
that you cannot push on something that refuses to push back, but you can
move it where you please.)

In Fig. 2.9 we show the modes of a string with one end fixed and the
other free. We have labeled the successive modes according to the number
of quarter-wavelengths contained in the string length I.. Notice that the
even harmonics with frequencies 2y, 4y, etc. are missing. The Fourier
analysis of functions f{z) with value zero at z = 0 and slope zero at x = L
is discussed in Prob. 2.29.
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Dependence of tone quality on method of excitation. When a piano string
is struck by its hammer, the fundamental (»,), the second harmonic or oc-
tave (2v4), the octave plus a fifth (3»;), the second octave (4r,), the second
octave plus a major third (5»,), and the second octave plus a fifth (6v,) are
all excited to some extent, as are higher harmonics of the fundamental tone
vy. The amount and phase of each Fourier component (each harmonic)
depend on the initial configuration and velocity of all parts of the string at
the instant just after it has been struck by the hammer. These depend to
a great extent on the location of the hammer, i.e., on its distance from the
end of the string. No mode that has a node (a permanently motionless
point) at the striking point will be excited by the hammer blow, since the
hammer imparts an initial velocity to the part of the string it hits. For ex-
ample, if the string is plucked at its center, the modes with a node at the
center are not excited. Inspection of Fig. 2.3 shows that in that case all the
even harmonics are missing. Thus if we pluck the string for C128 in the
middle, we expect it to vibrate in a superposition of C128, G384, E640,
etc. The “tone quality” is then appreciably different from that produced
when the string is struck near one end and vibrates in a superposition of

C128, C256, G384, C512, E640, G768, etc.

Modes of homogeneous string form complete set of functions. Starting
with a string fixed at both ends, we discovered that any reasonable function
fiz) that is defined between z = 0 and z = L and that is zero at z = 0 and
L can be expanded in the Fourier series

o0
fz) = Z Ay sin nkyz; kil = o (54}
n=1
For that reason, the functions sin nk;z, withn = 1, 2, 3, . . ., are said to

be a complete set of functions [with respect to functions f{z) that vanish at
z = 0and L], A complete set of functions is defined as a set such that any
(reasonable) function f{z) can be written as a superposition of functions
from the set by choosing suitable constant coefficients.

Inhomogeneous string. Besides the sinusoidal functions that constitute a
Fourier series, are there other complete sets? Yes, infinitely many sets!
We can see this as follows. Suppose that the string is not homogeneous,
ie., that either its mass density or its tension {or both) is a continuous
function of position z. (An example of a “string” with varying density and
tension is provided by a vertically hanging slinky with fixed top and bot-
tom ends. The tension at the bottom is less than that at the top by the
weight Mg, where M is the total mass of the slinky.) Then the equation of
motion of a small segment of string does not again lead to the classical
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wave equation, which is

“%(z,t) Ty 2%Y(zt)
e po  0z2 '

Instead, if we have equilibrium tension Ty(2) and density po(z), we easily
find (Prob. 2.10) that we have

azdl(z,t) 1 ayfl(n, )
22 T pof2) oz [TO() 02 ]’ (55)

which reduces to the classical wave equation only if To(z) and po(z) are
constants, independent of z. In a normal mode of this inhomogeneous
string, just as in a mode of the homogeneous string, every part of the
string vibrates in harmonic motion with the same frequency and phase
constant:

Yz,t) = A(z) cos (et + @). (56)
Thus
oWy 2
g = Y A(z) cos (wt + @), (57)
?;: = cos (wf + @) —~= dA(‘) (58)

Substituting these in Eq. (55) and canceling the common factor cos (wt + @)
yields the equation for the shape of the mode:

L 4 [ () FAR) ]_ — w2A(2). (59)

po(z) d

Sinusoidal shape of standing waves is characteristic of homogeneous
systems. The shape of the mode is given by A(z), which is obtained by
solving the differential equation Eq. (59) with the appropriate boundary
conditions that A(z) = 0 at z = 0 and L. The function A(3) is not sinus-
oidal in shape unless Ty and p, are constants. Thus sinusoidal oscillations
in space are only characteristic of the shapes of the normal modes of a
homogeneous system.

Modes of inhomogeneous string form complete set of functions. We
shall tell you without proof the characteristics of the normal modes for an
inhomogeneous string with ends fixed at z = 0 and L. The lowest mode
corresponds to a solution of Eq. (59), A(z), which is zero only at z = 0
and L. (That is like one half-wavelength of a “distorted sine wave,”
which has no nodes between 0 and L.) This mode has frequency ;.
The next mode has one node between z = 0 and L and thus resembles one
full wavelength of a distorted sine wave. It has characteristic frequency
wg. The mith mode has m — 1 nodes between z = 0 and L and resembles
m half-wavelengths of a distorted sine wave. There are an infinite number
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of modes (for a continuous string). The functions A,(z), A2(z), As(z), . . .,
which give the space dependence of the modes, form a complete set with
respect to any reasonable function f{z) that vanishes at z = 0 and L. A
reasonable function f(z) is defined to be one which the string or slinky can
follow without violating any of our assumptions. In that case we can
make a template that has the shape f{(z), fit the inhomogeneous string to
the template, and let it go from rest at ¢ = 0. The string will vibrate in
an infinite superposition of its modes:
Yat) = D cmAm(z) cOS wmt (60)
m=1
Then at t = 0 we have
o
o) = F) = 3 onAnia) (61)
m=
Equation (61) shows that f{z) (subject to our assumptions) can be expanded
in the set of functions An(z). Thus A,(z) form a complete set of functions.
This argument is exactly analogous to the one that convinced us that the
sinusoidal functions of a Fourier series form a complete set with respect to
functions f(z) that vanish at z = 0 and L.

Eigenfunctions. There are an infinite number of different ways that we
can construct a string with nonuniform mass density and tension. There-
fore, there are an infinite number of different complete sets A,(z). Sinus-
oidal functions of z are thus not the only complete set of functions for ex-
panding functions f{z). But they are a very important set, because they
are very simple and easy to understand. Furthermore, they give the shapes
of the modes whenever we have a system that is spatially homogeneous.
When that is not the case, the sinusoidal functions are not very useful.
Instead one tries to find and use the appropriate functions A,(z) that cor-
respond to the normal modes of the system. These functions Ay(z), or,
more generally, An(x.,y,2) for a three-dimensional system, are called eigen-
functions. They give the space dependence of the normal modes.

For every position z, y, z, the time dependence of a mode is always
given by cos (wt + @). Thus a mode is essentially nothing but the simul-
taneous small oscillation (small enough to give linear equations) of all the
moving parts, all parts oscillating with the same frequency and same phase
constant. When the entire system is in a single mode, it pulsates and
throbs like one big oscillator. Each mode has its own “shape,” i.e., its own
eigenfunction. The relation between mode frequency and shape is called
the dispersion relation, w(k), when the shapes of the eigenfunctions are
sinusoidal. When they are not sinusoidal, there is, of course, no such
thing as wavelength or wavenumber k. Then the relation between mode
frequency and shape is not usually called by the name “dispersion relation.”



