Fig. 1.6 Systems with two degrees of
freedom. (The masses are constrained to
remain in the plane of the figure.)
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1.4 Free Oscillations of Systems with Two Degrees of Freedom

In nature there are many fascinating examples of systems having two
degrees of freedom. The most beautiful examples involve molecules and
elementary particles (the neutral K mesons especially); to study them re-
quires quantum mechanics. Some simpler examples are a double pendu-
lum (one pendulum attached to the ceiling, the second attached to the bob
of the first); two pendulums coupled by a spring; a string with two beads;
and two coupled LC circuits. (See Fig. 1.6.) It takes two variables to de-
scribe the configuration of such a system, say y, and 5. For example, in
the case of a simple pendulum free to swing in any direction, the “moving
parts” Y, and ¥, would be the positions of the pendulum in the two per-
pendicular horizontal directions; in the case of coupled pendulums, the
moving parts v, and i, would be the positions of the pendulums; in the
case of two coupled LC circuits, the “moving parts” ¥, and ¥, would be
the charges on the two capacitors or the currents in the circuits.

The general motion of a system with two degrees of freedom can have a
very complicated appearance; no part moves with simple harmonic motion.
However, we will show that for two degrees of freedom and for linear
equations of motion the most general motion is a superposition of two in-
dependent simple harmonic motions, both going on simultaneously. These
two simple harmonic motions (described below) are called normal modes
or simply modes. By suitable starting conditions (suitable initial values of
Yo, Yo, Ao /dt, and dy,/dt), we can get the system to oscillate in only one
mode or the other. Thus the modes are “uncoupled,” even though the
moving parts are not.

Properties of a mode. 'When only one mode is present, each moving part
undergoes simple harmonic motion. All parts oscillate with the same fre-
quency. All parts pass through their equilibrium positions (where ¢ is zero)
simultaneously. Thus, for example, one never has in a single mode,
Ya(t) = A cos wt and yu(t) = Bsin wt (different phase constants) or
Ya(t) = A cos wit and Yu(t) = B cos wet (different frequencies). Instead
one has, for one mode (which we call mode 1),
of) = Aq cos (anf S

Yalf) 1 €08 (w1t + 1) ., (41)

¥a(t) = By cos (it + g1) = "X]‘%(t),
1

with the same frequency and phase constant for both degrees of freedom
(moving parts). Similarly, for mode 2, the two degrees of freedom @ and b
move according to

Yu(t) = Ag 08 (wat + @q), (42)

B
Yn(t) = Bz cos (wat + @) = ~Ai¢a(t).
2
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Each mode has its own characteristic frequency: w; for mode 1, w; for
mode 2. In each mode the system also has a characteristic ““configuration”
or “shape,” given by the ratio of the amplitudes of motion of the moving
parts: Ay/B; for mode 1 and Az/B; for mode 2. Note that in a mode the
ratio Yo(t)/{»(t) is constant, independent of time. It is given by the appro-
priate ratio A,/By or Az/Bs, which can be either positive or negative.

The most general motion of the system is (as we will show) simply a
superposition with both modes oscillating at once:

Yo(t) = Aqcos (it + @1) + Az cos (wat + @2),
Pu(t) = By cos (wit + @1) + Bz cos (wat + @a2).

Let us consider some specific examples.

(43)

Example 6: Simple spherical pendulum

This example is almost too simple, for it does not reveal the full richness of
complexity of the general motion that corresponds to Egs. (43) because the
two modes, corresponding respectively to oscillation in the x and in the y
direction, have the same frequency, given by «? = g/l. Rather than the
superpositions of Eq. (43), corresponding to two different frequencies, we
have the simpler results obtained in Eqgs. (39) and (40)

x(t) = Yo(t) = Aq cos (it + ¢1), W = w,

44
y(t) = ot} = Bz cos (wat + p2), w2 = wy =, &

where we have forced Egs. (44) to appear to resemble Egs. (43). For the
two modes to have the same frequency is unusual; the two modes are then
said to be “degenerate.”

Example 7: Two-dimensional harmonic oscitlator

In Fig. 1.7 we show a mass M that is free to move in the xy plane. Itis
coupled to the walls by two unstretched massless springs of spring constant
K oriented along x and by two unstretched massless springs of spring con-
stant K» oriented along y. In the small-oscillations approximation, where
we neglect x2/a?, y?/a?, and xy/a?, we shall show that the x component
of return force is due entirely to the two springs K. Similarly, the y com-
ponent of return force is entirely due to the springs K;. You can prove
this by writing out the exact F, and F, and then discarding nonlinear
terms. Here is an easier way to see it: Start at the equilibrium position of
Fig. 1.7a. Mentally make a small displacement x of M in the +x direc-
tion. The return force at this stage in the argument is given by inspection
of Fig. 1.7:

Fw = --2K1x, Fg, = O,
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Fig. 1.7 Two-dimensional harmonic
oscillator, (a) Equilibrium. (h) General
configuration.

Next make a second small displacement y (starting at the terminus of the
first displacement), this time in the +y direction. The question of inter-
est is whether F, changes. The K; springs get longer by a small amount
proportional to 2. We neglect that. The K, springs change their length
by an amount proportional to y (one gets shorter, the other longer), but
the projection of their force on the x direction is proportional also to x.
We neglect the product yx. Thus F, is unchanged. A similar argument
applies to F,. Thus we obtain the two linear equations
d?x d?y

M = —2Ky2, and e —2Ksy, (45)

which have the solutions

x = Ay co0s (wit + ¢1), w? = _'_Z_AK_Z;_’
(46)
s 2K,
y = B2 cos (wat + @), w? =

We see that the x motion and y motion are uncoupled, and that each is a
harmonic oscillation with its own frequency. Thus the x motion corre-
sponds to one normal mode of oscillation, the  motion to the other. The
x mode has amplitude A; and phase constant @, that depend only on the
initial values x(0) and %(0), i.e., the x displacement and velocity at time
t = 0. Similarly the y mode has amplitude B, and phase constant g3 that
depend only on the initial values y(0) and (0).
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Normal coordinates. Notice that our solution (46), which is completely
general, is still not as general in appearance as Egs. (43). That is because
we were lucky! Our natural choice for x and y along the springs gave us
the uncoupled equations (45), each of which corresponds to one of the
modes. In terms of Eq. (43), we came out with v, luckily chosen so that
Ag came out identically zero and with s chosen so that By came out iden-
tically zero. Our fortunate choice of coordinates gave us what are called
normal coordinates; in this example the normal coordinates are x and y.

Suppose we had not been so lucky or so wise. Suppose we had used a
coordinate system x’ and y’ related to x and y by a rotation through
angle a, as shown in Fig. 1.8. By inspection of the figure we see that the
normal coordinate x is a linear combination of the coordinates 2’ and v/,
as is the other normal coordinate, y. If we had used the “dumb” coordi-
nates x” and y’ instead of the “smart” coordinates x and y, we would have
obtained two “coupled” differential equations, with both x” and y” appear-
ing in each equation, rather than the uncoupled equations (5).

In most problems mvolvmg two degrees of freedom it is not easy to find
the normal coordinates “by inspection,” as we did in the present example.
Thus the equations of motion of the different degrees of freedom are
usually coupled equations. One method of solving these two coupled
differential equations is to search for new variables that are linear combi-
nations of the original “dumb” coordinates such that the new variables
satisfy uncoupled equations of motion. The new variables are then called
“normal coordinates.” In the present example we know how to find the  Fig. 1.8 Rotation of coordinates.
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normal coordinates, given the “dumb” coordinates " and ¢f’. Simply rotate
the coordinate system so as to obtain x and y, each of which is a linear
combination of 2’ and y’. In a more general problem, we would have to
use a more general linear transformation of coordinates than can be
obtained by a simple rotation. That would be the case if, for example, the
pairs of springs in Fig, 1.7 were not orthogonal.

Systematic solution for modes. Without considering any specific physical
system, we assume that we have found two coupled first-order linear
homogeneous equations in the “dumb” coordinates x and y:

2
_dd_t_2x_ = —da11X — a2y (47)
d2
d—tg = —da;1X — dagzy. (48)

Now we simply assume that we have oscillation in a single normal mode.
That means we assume that both degrees of freedom, namely x and y, os-
cillate with harmonic motion with the same frequency and same phase
constant. Thus we assume we have

x=Acos(wt+ ), y=Bcos(wl+ @), (49)
with @ unknown and B/A unknown at this stage. Then we have
d?x d?y
W = —w2x, Ti'i"z'" = —(.Ozy. (50)

Substituting Eq. (50) into Egs. (47) and (48) and rearranging, we obtain
two homogeneous linear equations in x and y:

(@11 — iz + arzy = 0, (51)
anx + (az2 — ¥y = 0. (52)
Equations (51) and (52) each give the ratio y/x:

y _ w? — ay

; - [£3%:) ’ (53)
Y — an
x w?— ayy (54)

For consistency, we need to have Egs. (53) and (54) give the same result.
Thus we need the condition

w? — ayy _ az

»
a2 w2 — ay

i.e.,
(au — wz)(agg - w2) — 2119 = Q. (55)
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Another way to write Eq, (55) is to say that the determinant of coefficients
of the linear homogeneous equations (51) and (52) must vanish:
!011 - w? a2

Ioan azg — w? = (a1 — wi(azz — @?) — azia2 = 0. (56)
! - R

Equation (55) or (56) is a quadratic equation in the variable w2. It has
two solutions, which we call w2 and w22. Thus we have found that if we
assume we have oscillation in a single mode, there are exactly two ways
that that assumption can be realized. Frequency w, is the frequency of
mode 1; w; is that of mode 2. The shape or configuration of x and y in
mode 1 is obtained by substituting w? = w2 back into either one of
Egs. (53) and (54). [They are equivalent, because of Eq. (56).] Thus

_!L) _ (ﬁ) _B_we’—an 57
(x mode 1 A/moder Al a1z (57a)

1) 2(_%) B _ @’ —an 57h
(x mode 2 A Vmode 2 Az aie ( )

Once we have found the mode frequencies w; and @z and the amplitude
ratios B1/A; and B»/As, we can write down the most general superposition
of the two modes as follows:

x(t) = (t) + x2(t) = Ay cos (w1t + @1) + Az cos (w2t + @2), (58)

Similarly,

B B
y(t) = =X Ay cos (w1t + @1) + ~2 As cos (wat + @)
Aq A

= By cos (w1t + @1) + Bz cos {(wal + o). (59)

Notice that, whereas we chose A1, @1, Ay, and @ with complete freedom
in Eq. (58), we had no freedom at all left when we came to write the con-
stants in Eq. (59), because g1 and ¢z were already fixed and because we
had to satisfy Egs. (57).

The most general solution of Egs. (47) and (48) comsists of a superposi-
tion of any two independent solutions which satisfies the four initial condi-
tions given by x(0), £(0), y(0), and §(0). A superposition of the two normal
modes, with the four constants Ay, @1, Az, and @, determined by the four
initial conditions, is such a solution. Thus the general solution can be
(although it need not be) written as a superposition of the modes.

Example 8: Longitudinal oscillations of two coupled masses

The system is shown in Fig. 1.9. The two masses M slide on a frictionless
table. The three springs are massless and identical, each with spring con-
stant K. We will let the reader do the systematic solution (Prob. 1.23), but
here let us try to guess the normal modes. We know there must be two



Fig. L9  Longitudinal oscillations.
(a) Equilibrium. (b) General configura-
tion.
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modes, since there are two degrees of freedom. In a mode, each moving
part (each mass) oscillates with harmonic motion. This means that each
moving part oscillates with the same frequency, and thus the return force
per unit displacement per unit mass is the same for both masses. (We
learned in Sec. 1.2 that w? is the return force per unit displacement per
unit mass. That holds for each moving part, whether it is a single isolated
system with one degree of freedom or is part of a larger system. The
only requirement is that the motion be harmonic motion with a single
frequency.)

In the present example the masses are equal. We need therefore only
search for configurations that have the same return force per unit displace-
ment for both masses. Let us guess that the displacements may be the
same, and see if that works: Suppose we start at the equilibrinm position
and then displace both masses by the same amount to the right. Is the re-
turn force the same on each mass? Notice that the central spring has the
same length as it had at equilibrium, so that it exerts no force on either
mass. The left-hand mass is pulled to the left because the left-hand spring
is extended. The right-hand mass is pushed to the left with the same force,
because the right-hand spring is compressed by the same amount. We
have therefore discovered one mode!

Mode 1: Yalt) = Pu(t), 0 = —. (60)

The frequency 12 = K/M in Eq. (60) follows from the fact that each mass
oscillates just as it would if the central spring were removed.
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Now let us try to guess the second mode. From the symmetry, we guess
that if 2 and b move oppositely we may have amode. If 2 moves a distance
Y, to the right and b moves an equal distance to the left, each has the same
return force. Thus the second mode has Y3, = —y,. The frequency w,
can be found by considering a single mass and finding its return force per
unit displacement per unit mass. Consider the left-hand mass a. Tt is
pulled to the left by the left-hand spring with a force F, = —Ky,. Itis
pushed to the left by the middle spring with a force F, = —2Ky,. (The
factor of two occurs because the central spring is compressed by an amount
2y,.) Thus the net force for a displacement V¥, is —3Ky,, and the return
force per unit displacement per unit mass is 3K/M:

Mode 2: Yo = — Y, wp? = —. (61)

The modes are shown in Fig. 1.10.

Fig, 1.10 Normal modes of longitudinal
oscillation. (a) Mode with lower fre-
quency. (b) Mode with higher frequency.

We shall solve this problem once more, using the method of searching
for normal coordinates, i.e., “smart” coordinates. The “smart” coordinates
are always a linear combination of ordinary “dumb” coordinates, such that
instead of two coupled linear equations, one obtains two uncoupled equa-
sions. From Fig. 1.9b, we easily see that the equations of motion for a
zeneral configuration are

2.1
e — Ky, 4 Kt — Vo), (62)

d2l,
M A T K(pr — z,ba) — Kl,bb. (63}

di?
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By inspection of these equations of motion, we see that alternately adding
and subtracting these equations will produce the desired uncoupled equa-
tions. Adding Egs. (62) and (63), we obtain

ML + ) = —Kid + ) (64)

Subtracting Eq. (63) from Eq. (62), we obtain

Mii?_(%z__‘;’_b)_ = —3K({s — ). (65)

Equations (64) and (65) are uncoupled equations in the variables Y, + ¥
and ¢, — ¥». They have the solutions

Yo + s = a(t) = Ay cos (w1t + ¢1), w? = ?‘/KT, (66)
Yo — ¥ = Ya(t) = Ag cos (wgt + @z}, 0p? = -‘%{4(*, (67)

where A; and @, are the amplitude and phase constant of mode 1 and
where Az and @, are the amplitnde and phase constant of mode 2. 'We see
that Y, (t) corresponds to the motion of the center of mass, since (Y5 + V)
is the position of the center of mass. (We could have divided Eq. (64) by 2
and defined {; to be the position of the center of mass. The proportion-
ality factor of 4 is not of much interest.) We see that - is the compression
of the central spring, or (what amounts to the same thing) it is the relative
displacement of the two masses. If we had been smart enough, we might
have chosen {y and Y to start with, since the motion of the center of mass
and the “internal motion™ (relative motion of the two particles) are physi-
cally interesting variables. In many cases it is not so easy to find a simple
physical meaning for the normal coordinates. Thus we shall usually stick
with our original “dumb” coordinates even after finding the modes, simply
because we understand them best.

In the present problem we have found the normal coordinates y; and a.
Let us go back to our more familiar coordinates y, and 5. Solving Egs.
(66) and (67), we find

20y = Ay 008 (it + @1) + Az cos (wal + P2) (68)
2y = Aj cos (w1t + (p1> — Ay cos (wzt + (Pz). (69)

Notice that if we have a motion that is purely mode 1, then A; is zero, and,
according to Eqs. (68) and (69), we have {5, = {,. Similarly, in mode 2 we
have A, = 0 and y, = —{,. That is what we found before [in Egs. (60)
and (61)].
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Example 9: Transverse oscillations of two coupled masses

The system is shown in Fig, 1.11. The oscillations are assumed to be con-
fined to the plane of the paper. Therefore there are just two degrees of
freedom. The three identical massless springs have a relaxed length a; that
is less than the equilibrium spacing @ of the masses. Thus they are all
stretched. When the system is at its equilibrium configuration (Fig, 1.11a),
the springs have tension T,.

Because of the symmetry of the system, the modes are easy to guess.
They are shown in Fig. 1.11. The lower mode (the one with the lower
frequency, i.e., the one with the smaller return force per unit displacement
per unit mass for each of the masses) has a shape (Fig. 1.11¢) such that the
center spring is never compressed or extended. The frequency is thus ob-
tained by considering either one of the masses separately, with the return
force provided only by the spring that connects it to the wall. For either
the slinky approximation (unstretched spring length of zero) or the small-
oscillations approximation (displacements very small compared with the
spacing a), we shall show presently that a displacement ¢, of the left-hand

Fig. 111  Transverse oscillations.
{a) Equilibrium. (b) General configura-
tion. (¢) Mode with lower frequency.
(d) Mode with higher frequency.
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mass causes the left-hand spring to exert a return force of To(u/a). Hence,
in this mode the return force per unit displacement per unit mass, w;?, is
given by

Mode I:  w2=-0  ¥_ 43 (70)

Ma Vg

We see this as follows. First consider the slinky approximation (Sec. 1.2).
In this approximation, the tension T is larger than T, by the factor //a,
where [ is the spring length and a is the length at equilibrium (Fig. 1.11a).
The spring exerts a transverse return force equal to the tension T times the
sine of the angle between the spring and the equilibrium axis of the springs,
i.e., the return force is T({o/l). But T = Ty(l/a). Thus the return force is
To(Ya/a), and this gives Eq. (70). Next consider the small-oscillations ap-
proximation (Sec. 1.2). In that approximation, the increase in length of
the spring is neglected, because it differs from the equilibrium length a only
by a quantity of order a(y,/a)?, and therefore the increase in tension also
is neglected. The tension is thus Ty when the displacement is y,. The
return force is equal to the tension T, times the sine of the angle between
the spring and the equilibrium axis. This angle may be taken to be a
“small” angle, since the oscillations are small. Then the angle (in radians)
and its sine are equal, and both are equal to y,/a. Thus the return force
is To(Ya/a). This gives Eq. (70).

Similarly, we can obtain the frequency for mode 2 (Fig. 1.11d) as follows:
Consider the left-hand mass. The left-hand spring contributes a retum
force per unit displacement per unit mass of Ty/Ma, as we have just seen
in considering mode 1. In mode 2 the center spring is “helping” the left-
hand spring, and in fact it is providing twice as great a return force as is
the left-hand spring. This is easily seen in the small-oscillations approxi-
mation: The spring tension is Ty for both springs, but the center spring
makes twice as large an angle with the axis as does the end spring, so that
it gives twice as large a transverse force component. The total return
force per unit displacement per unit mass, wo?, is thus given by

_ ., To 2Ty _3To ¥ _
Mode 2: we* = m m = m, :l;-a_ = —1. (71)

Notice that in the slinky approximation, where the relation Ty =
K(a — ag) becomes Ty = Ka, the frequencies of the modes of transverse
oscillation [Egs. (70) and (71)] are the same as those for longitudinal oscil-
lation [Eqgs. (60) and (61)]. Thus we have a form of degeneracy. This
degeneracy does not occur for the small-oscillation approximation, where
ao Is not negligible compared with a.

If the modes had not been so easy to guess, we would have written down
the equations of motion of the two masses a and b and then proceeded with
the equations, rather than with a mental picture of the physical system it-
self. 'We shall let you do that (Prob. 1.20).
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Example 10: Two coupled LC circuits

Consider the system shown in Fig. 1.12. Let us find the equations of
“motion”—motion of the charges in this case. The electromotive force
(emf) across the left-hand inductance is L dI,/dt. A positive charge ; on
the left-hand capacitor gives an emf C~1Q, that tends to increase I, (with
our sign conventions). A positive charge Oz on the middle capacitor gives
an emf C~1(Q), that tends to decrease I,. Thus we have for the complete
contribution to L dI,/dt

L_;tL — C1Q, — C1Qn (72)
Similarly,
L (;fb = C1Q, — C1Qs, (73)

As in Sec. 1.2, we will express the configuration of the system in terms of
currents rather than charges. To do this, we differentiate Eqs. (72) and
(73) with respect to time and use conservation of charge. Differentiating
gives

d?1, _,dOy _,dOs
— 15 o182
L de2 di ¢ dt ’ (74)
Pl g dQr (g dOs
de ¢ dt ¢ ds - ()

Charge conservation gives

oy _ ao: _; _ Qs _
dr I,, a I, — L, F7ak L. (76)

Substituting Egs. (76) into Egs. (74) and (75), we obtain the coupled equa-
tions of motion

L8 _ _cag, 4 o, — 1) (77)
dtz - - o + (b — 4g

2
LE_ g, — 1) — cu, (78)

dt?

Fig. 1.12 Two coupled LC circuits.
General configuration of charges and
cuzrrents. The arrows give sign conven-
tions for positive currents.
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Now that we have the two equations of motion we want to find the two
normal modes. These can be found by searching for normal coordinates,
by guessing, or by the systematic method (see Prob. 1.21). One finds

1
Mode 1: L =1, w? = 7

3C1 (79
Mode 2: I, = —L, we? = 5

Notice that in mode 1 the center capacitor never acquires any charge, and
it could be removed without affecting the motion of the charges. Also, in
mode 1 the charges (1 and Q3 are always equal in magnitude and opposite
in sign. In mode 2 the charges Q; and Q3 are always equal in both
magnitude and sign, and Q2 has twice that magnitude, but opposite sign.

We purposely chose the three examples (8-10) of longitudinal oscillations
(Fig. 1.9), transverse oscillations (Fig. 1.11), and coupled LC circuits (Fig,
1.12) to have the same spatial symmetry and to give equations of motion
and normal modes with the same mathematical form. We also chose these
examples to be the natural extensions (to two degrees of freedom) of the
similar systems with one degree of freedom that we considered in Examples
2-4 in Sec. 1.2, as shown in Figs. 1.3, 1.4, and 1.5. In Chap. 2 we shall
extend these same three examples to an arbitrarily large number of degrees
of freedom.

1.5 Beats

There are many physical phenomena where the motion of a given moving
part is a superposition of two harmonic oscillations having different angular
frequencies wy and wg. For example, the two harmonic oscillations may
correspond to the two normal modes of a system having two degrees of
freedom. As a contrasting example, the two harmonic oscillations may be
due to driving forces produced by two independently oscillating uncoupled
systems. This sort of situation is illustrated by two tuning forks of differ-
ent frequencies. Each produces its own “note”” by causing harmonically
oscillating pressure variations at the fork, which radiate through the air as
sound waves. The motion induced in your eardrum is a superposition of
two harmonic oscillations.

In all these examples, the mathematics is the same. For simplicity we
assume that the two harmonic oscillations have the same amplitude. We
also assume that the two oscillations have the same phase constant, which
we take to be zero. Then we write the superposition ¢ of the two harmonic
oscillations Yy and ¥y:

Y1 = A cos wit, Yo = A c0s wst, (80)
Y =11 + Y2 = A cos wit + A cos wat. (81)
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Modulation. We shall now recast Eq. (81) into an interesting form. We
define an “average” angular frequency w,y and a “modulation” angular
frequency wyoq:

Way = Hw1 + @z),  Wmoed = Hws — wa). (82)
The sum and difference of these give
W1 = Way + Wmods W2 = Way — Wmod- (83)
Then we may write Eq. (81) in terms of way and omoq:

Y = A cos wit + A cos wat
= A cos (C'J::w"'L + wmodt> + A cos (wavt — wmodt)
= [2A COS Wyedt] COS Wayt,
ie.,
Y = Amodlt) CoS wayt, (84)
where
Amod(t) = 2A €08 Wmoat. (85)

We can think of Eqs. (84) and (85) as representing an oscillation at angular
frequency w,y, with an amplitude A4 that is not constant but rather varies
with time according to Eq. (85). Equations (84) and (85) are exact. How-
ever, it is most useful to write the superposition, Eq. (81), in the form of
Egs. (84) and (85) when w; and w; are of comparable magnitude. Then
the modulation frequency is small in magnitude compared with the average
frequency:
w ST W Wipod & Way.

In that case, the modulation amplitude, Apn.4(t), varies only slightly during
several of the so-called “fast’”” oscillations of cos w,yt, and therefore Eq. (84)°
corresponds to “almost harmonic” oscillation at frequency wsy. Of course,
if Amoa is exactly constant, Eq. (84) represents exact harmonic oscillation
at angular frequency wsy. Then wyy = w1 = wy, since Apoq is only con-
stant if wmeq is zero. If @y and w, differ only slightly, the superposition of
the two (exactly harmonic) oscillations w; and w; is called an “almost har-
monic” or “almost monochromatic”” oscillation of frequency w,, with a
slowly varying amplitude.

Almost harmonic oscillation. This is our first example of a very impor-
tant and very general result that we will encounter many times: A linear
superposition of two or more exactly harmonic oscillations having different
frequencies (and different amplitudes and phase constants), with all the
frequencies lying in a relatively narrow range or “band” of frequencies,
gives a resultant oscillation that is “almost” a harmonic oscillation, with a
frequency w,y that lies somewhere in the band of the “component™ oscil-
lations that make up the superposition. The resultant motion is not
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exactly a harmonic oscillation because the amplitude and phase constant
are not exactly constant, but only “almost constant.” Their variation is
negligible during one cycle of oscillation at the average “fast” frequency
way, provided that the frequency range or “bandwidth” of the component
harmonic oscillations is small compared with w.,. (We shall prove these
remarks in Chap. 6.)

Some physical examples of beats follow:

Example 11: Beats produced by two tuning forks

When a sound wave reaches your ear, it produces a variation in air pres-
sure at the eardrum. Let {; and y; represent the respective contributions
to the gauge pressure produced outside your eardrum by two tuning forks,
numbered 1 and 2. (The gauge pressure is just the pressure on the outer
surface of your eardrum minus the pressure on the inner surface; the pres-
sure on the inner surface is normal atmospheric pressure. This pressure
difference provides the driving force to drive the eardrum.)

If both forks are struck equally hard at the same time and are held at
the same distance from the eardrum, the amplitudes and phase constants
for the gauge pressures Y1 and y are the same, and thus Eq. (80) correctly
represents the two pressure contributions. The total pressure (which gives
the total force on the drum) is the superposition ¥ = {; + ¥» of the con-
tributions from the two forks. It is given either by Eq. (81) or by Eqs. (84)
and (85). If the frequencies of the two forks, »1 and »;, differ by more
than about 6% of their average value, then your ear and brain ordinarily
prefer Eq. (81). That is, you “hear” the total sound as two separate notes
with slightly different pitches. For example, if »; is § times »1, you hear
two notes with an interval of a “major third.” If vy is 1.06»1, you hear »;
as a note “one half-tone higher” in pitch than »,. However, if »; and »y
differ by less than about 10 cps, your ear (plus brain) no longer easily
recognizes them as different notes. (A musician’s trained ear may do
much better.) Then a superposition of the two is not heard as a “chord”
made up of the two notes vy and »,, but rather as a single pitch of
frequency vay with a slowly varying amplitude A4, just as given by Egs.
(84) and (85).

Squarelaw detector. The modulation amplitude Aneq oscillates at the
modulation angular frequency wmeq. Whenever wyoqt has increased by an
amount 27 (radians of phase), the amplitude A,,,q has gone through one
complete cycle of oscillation (i.e., the “slow” oscillation at the modulation
frequency) and has returned to its original value. At two times during one
cycle, Apod is zero. At those times, the ear doesn’t hear anything—there
is no sound. In between the silences, you hear a sound at the average
pitch. Since cos wmeat goes from zero to +1, to zero, to —1, to zero, to
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+1, etc., we see that Anmeq has opposite signs at successive loud times.
Nevertheless, your ear does not recognize “two kinds” of loud times, as
you will discover if you perform the experiment with tuning forks. Thus
your ear (plus brain) does not distinguish positive from negative values of
Amoa- It only distinguishes whether the magnitude of Aneq is large
(“loud”) or small (“soft”), that is, whether the square of Amqa is large or
small. For that reason, your ear (plus brain) is sometimes said to be a
square-law detector. Since Apoqa® has two maxima for every modulation
cycle (during which wmeat increases by 2m), the repetition rate for the se-
quence “loud, soft, loud, soft, loud, soft, . . .”” is twice the modulation fre-
quency. This repetition rate of large values of Ame? is called the beat

frequency:
Wheat = 20mea = W1 — Wa. (86)
We can see this algebraically as follows:

Amod(t) = 2A €08 wmodt.
[Amot.'l(t)}2 = 4A2 cos? Winodt;
but
cos? @ = 3[cos? 8 + sin2 @ + cos?f — sin? 6] = 31 + cos 26].
Thus
[Amod(“f)]2 = 2A2[1 + ¢OS meodt];

ie.,
(Amod>2 = 2A2[1 + cO0s wbeatt]. (87)

Thus Aeq? oscillates about its average value at twice the modulation fre-
quency, i.e., at the beat frequency, w; — wa.

The superposition of two harmonic oscillations with nearly equal fre-
quencies to produce beats is illustrated in Fig, 1.13.

Example 12: Beats between two sources of visible light

In 1955, Forrester, Gudmundsen, and Johnson performed a beautiful ex-
periment showing beats between two independent sources of visible light
with nearly the same frequency.t The light sources were gas discharge
tubes containing freely decaying mercury atoms with an average frequency
of vay = 5.49 X 1014 cps, corresponding to the bright “green line” of mer-
cury. The atoms were placed in a magnetic field. This caused the green
radiation to “split” into two neighboring frequencies, with the frequency
difference proportional to the magpetic field. The beat frequency was
v — vz = 1010 ¢ps. This is a typical “radar” or “microwave” frequency.

1 A. T. Forrester, R. A. Gudmundsen, and P. O. Johnson, “Photoelectric mixing of incoherent
light,” Phys. Rev. 99, 1691 (1955).



Fig. 1.13 Beats. {1 and v ave the pres-
sure variations at your ear produced by
two tuning forks with frequency ratio
v1/vz = 10/9. The total pressure is the
superposition 1 + s, which is an
“almost harmonic” oscillation at fre-
quency vay with slowly varying amplitude
Amoa(t). The loudness is proportional to
(Amea)? and consists of a constant (aver-
age value) plus a sinusoidal variation at
the beat frequency. The beat frequency
is twice the modulation frequency.
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Their detector used the photoelectric effect to give an output electric cur-
rent proportional to the square of the modulation amplitude of the result-

ant electric field in the light wave. Thus the detector was a square-law
detector. The output of their detector showed a time variation similar to
the “loudness,” Amoa?, in Fig. 1.13.

Example 13: Beats between the two normal modes of two weakly coupled identical oscillators

Consider the system of two identical pendulums coupled by a spring
shown in Fig. 1.14. The normal modes are easily guessed by analogy with
the longitudinal oscillations of the identical masses studied in Sec. 1.4, In
mode 1 we have ¢, = ¢;. The coupling spring could just as well be
removed; the return force is entirely due to gravity. The return force per
unit displacement per unit mass (assuming small-oscillation amplitudes, for
which we have a linear restoring force) is Mg6/(I0)M = g/I:

Mode 1: w2 = %, Yo = . (88)
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Fig. 1.14 Coupled identical pendulums.
(a) Equilibrium configuration. (b) Mode
with lower frequency. (c) Mode with
higher frequency.

In mode 2 we have ¢, = —3;. Consider the left-hand bob. The retum
force due to the spring is 2Ky, (The factor of 2 results from the fact that
the spring is compressed by an amount 2¢, in this mode when bob a is
displaced by an amount y,.) The return force due to gravity is Mgt =
Mgy,/l. The spring and gravity both act with the same sign. Thus the

total return force per unit displacement per unit mass is
2K
Mode2:  wp2=8 422, ¢, = —y (89)
l M
We now wish to study “beats between the two modes™ of this system.
What does that mean? Each mode is a harmonic oscillation with a given
frequency. The general motion of pendulum « is given by a superposition
of the two modes:

Yalt) = ¥a(t) + Pa(t).

Thus, (t) will look like the superposition ¥y + ¢» in Fig. 1.13 if the
mode frequencies are nearly the same (and if the amplitudes of the two
modes are the same). Then we say that the motion of pendulum « exhibits
beats. (Of course pendulum b will also exhibit beats, as we shall see.)
Any system of two degrees of freedom can exhibit beats, but the system
we have chosen is convenient because we can easily make the beat fre-
quency »3 — vz small compared with the average frequency by using a
sufficiently weak spring or by making the mass M large. [To see this,
compare Egs. (88) and (89).]

What do the beats look like? According to our discussion in Sec. 1.4,
the displacements of the bobs, ¥, and {4, can be expressed in terms of the
normal coordinates Y1 and y» by the general superposition

Yo = Y1 + Y2 = Ay cos (&1t + ¢1) + Az cos (wat + ga),
Yo = Y1 — Yo = Ay cos (wlt + q;']_) — As cos (wzt + @)

By analogy with the tuning forks, we will get the largest beat effect if the
two modes are present with equal amplitudes. (If either A; or A, is
nearly zero compared to the other, there is virtually no beat effect, since
(approximately) only one harmonic oscillation is present. Both oscillations
should have approximately equal amplitudes to produce strong beats.)
Therefore we take Ay = As = A. The choice of phase constants ¢y and g2
corresponds to the initial conditions, as we shall see. By analogy with our
example of the tuning forks, we take ¢; = ¢» = 0. With these choices
for A;, As, g1, and ¢z, Eqgs. (90) give

(90)

Yo(t) = A cos wit + A cos wyt, () = A cos wit — A cos wet.  (91)
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The velocities of the bobs are given by

z}'/,,(t) = %‘%’- = —w1A sin wyt — wsA sin wst,
o )
Pi(t) = —d“%’u = —wiA sin a1t 4+ weA sin wet.

In order to see how to excite the two modes in just such a way as to get
oscillations corresponding to Eq. (91), let us consider the initial conditions
at time ¢ = 0. According to Egs. (91) and (92), the initial displacements
and velocities of the bobs are given by

Ya(0) = 24,  (0) =0; (0} =0,  (0) = 0.

Therefore we hold bob a at displacement 24, bob b at zero, and release
both bobs from rest at the same time, which we call ¢ = 0.

After that we just watch. (You should do this experiment yowrself.
You need two cans of soup, a slinky, and some string. See Home Experi-
ment 1.8.) A fascinating process unfolds. Gradually the oscillation ampli-
tude of pendulum a decreases and that of pendulum b increases, until
eventually pendulum a is resting and pendulum b is oscillating with the
amplitude and energy that pendulum a started out with. (We are neglect-
ing frictional forces.) The vibration energy is transferred completely from
one pendulum to the other. By the symmetry of the system we see that
the process continues. The vibration energy slowly flows back and forth
between a and b. One complete round trip for the energy from a to b
and back to a is a beat. The beat period is the time for the round trip and
is the inverse of the beat frequency.

All of this is predicted by Eqgs. (91) and (92). Using @1 = way + @mm
and wz = Way — Wmoa it Eqs. (91), we get the “almost harmonic” oscillations

Yulf) = A €08 {Way + @moda)t + A €OS (Way — Wimoa)t
= (2A €05 Wpoqf) COS Wayt
= Amod(t) COs wavt (93)
and
Yo(t) = A 08 (Way + Wmod)t — A €0S (Way — Wmoa)t
= (2A sin wmeqt) Sin wayt
= Bmod(f) sin wayt. (94)

Let us find an expression for the energy (kinetic plus potential) of each
pendulum. We think of the oscillation amplitude Apq(t) as essentially
constant over one cycle of the “fast” oscillation, and we also neglect the
energy that is transferred between the weak coupling spring and the pen-
dulum. (If the spring is very weak, it never has a significant amount of
stored energy.) Thus during one fast oscillation cycle we think of pendu-
Ium a as a harmonic oscillator of frequency w,, with constant amplitude,
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Amoa. The energy is then easily seen to be given by twice the average
value of the kinetic energy (averaged over one “fast” cycle). This gives

Eq = %M Wav2Arpea? = 2-IWA2wav2 cos? Wrodl- (95)
Similarly,
Ep = $Mway?Biea? = 2MA20.,2 sin? wyoeqt. (96)

The total energy of both pendulums is constant, as we see by adding
Egs. (95) and (96):

Eq 4+ Ey = (2MA20,,%) = E. (97)
The energy difference between the two pendulums is

Ey — Ey = E{cos? Wpaat — $iNZ timaat)

= E ¢05 2p0at = E cos (001 — wo)t. (98)

Combining Eqgs. (97) and (98) gives
Eq = $E[1 + cos (0 — wa)t], (99a)
Ey = 3E[1 — cos (7 — wo)t]. (99b)

Equations (99) show that the total energy E is constant and that it flows
back and forth between the two pendulums at the beat frequency. In
Fig. 1.15 we plot ¥u(t), Yu(t), E,, and E;.

Fig. 1.15 Energy transfer between two
weakly coupled identical pendulums.
Energy flows back and forth fromato b
at the frequency |vy — vy, the beat fre-
quency of the two modes.
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36  Free Oscillations of Simple Systems

Esoteric examples

In the study of microscopic systems—molecules, elementary particles—
one encounters several beautiful examples of systems that are mathemati-
cally analogous to our mechanical example of two identical weakly coupled
pendulums. One needs quantum mechanics to understand these systems.
The “stuff” that “flows” back and forth between the two degrees of free-
dom, in analogy to the energy transfer between two weakly coupled pen-
dulums, is not energy but probability. Then energy is “quantized’—it
cannot “subdivide’ to flow. Either one “moving part” or the other has
all the energy. What “flows” is the probability to have the excitation
energy. Two examples, the ammonia molecule (which is the “clockworks™
of the ammonia clock) and the neutral K mesons, are discussed in Supple-
mentary Topic 1.

Problems and Home Experiments

1.1 Find the two mode frequencies in ¢ps (cycles per second) for the LC network
shown in Fig. 1.12, with L = 10 H (henrys) and C = 6 pF (microfarads). Also, sketch
the current configuration for each mode. Ans. vy = 20 cps, ro = 35 cps.

1.2 If you set a small block of wood (or something) on a record player turntable and
look at it from the side as the turntable goes around, using only one eye so as to get
rid of your depth perception, the apparent motion (i-e., motion projected perpendicular
to your line of sight) is harmouic, i.e., of the form x = x cos wt. (@) Prove the fore-
going statement. (b) Make a simple pendulum by suspending a small weight (like a
nut or bolt) from a string hung over the back of a chair. Adjust the length of string
until you can get your pendulum to swing in synchronization with the projected mo-
tion of the block on the turntable when the record player is set at 45 rpm. This gives
you a nice demonstration of the fact that the projection of a uniform circular motion
is a harmonic oscillation. It is also a nice way to measure g. If g has the standard
“textbook value™ of 980 cm/sec?, show that ] = 45 cm for # = 45 rpm. That should
be easy to remember!

1.3 TV set as a stroboscope. The light emitted by a TV set makes a good stro-
boscope. A given point on the screen is actually dark most of the time; it is lit a s;all
fraction of the time at a regular repetition rate. (You can see this by waving your
finger rapidly in front of the screen.) Let us call the regular repetition rate »py. The
object of this experiment is to measure vry. We will tell you that it is either 30 or
60 cps. (For the frequency to be accurately at its proper value, the set should be
tuned to a station and locked in on a stable picture—not one that is flickering or
drifting,.)

(@) As a very crude measurement, wave your finger in steady oscillation in front of
the screen at a rhythm of about 4 cps, for example. Your finger will block the light
from the screen wherever it happens to be when the screen flashes on.  Measure the
amplitude of your finger’s oscillation. Measure the separation between successive



