LINEARIZATION & FIXED Pts.

While we could integrate to find the trajectories we are interested in, we would only find a solution for a given initial condition.

Phase Space

We found with phase space flat we could see Annihies of trycetories. That's a useful tool for finding possible areas (parameters) of interest.

Another tool: hinensization

while it might som that you shald just always use a computer, shears some really good reasons to also learn mathematical tools that can provide additional into and checks.

Linevization of a differential eq. near a fixed pt.
We use linearization to find qualitatively
correct but approximate dynamics near
fixed pts.
Consider the pair of 1st order ODES,

$$\dot{x} = f(x, y)$$
 $\dot{y} = g(x, y)$
issume thereas a fixed pt, $\dot{x} = 0; \dot{y} = 0$
 $C < x^{*}, y^{*} >$
thus
 $f(x^{*}, y^{*}) = 0$ a $g(x^{*}, y^{*}) = 0$
 $C < x^{*}, y^{*} >$
thus
 $f(x^{*}, y^{*}) = 0$ a $g(x^{*}, y^{*}) = 0$
 $C < x^{*}, y^{*} >$
thus
 $f(x^{*}, y^{*}) = 0$ a $g(x^{*}, y^{*}) = 0$
 $C < x^{*}, y^{*} >$
thus
 $f(x^{*}, y^{*}) = 0$ a $g(x^{*}, y^{*}) = 0$
 $C < x^{*}, y^{*} >$
 $U = x - x^{*}$ $V = y - y^{*}$
Naw we see if the disturbances grow
or decay.

$$\begin{split} \dot{u} &= \frac{d}{dt} \left(x - x^* \right) = \dot{x} \quad \left(x^* \text{ custant} \right) \\ \dot{u} &= f \left(x^* + u, y^* + v \right) \\ \text{Expand w/ Taylor} \\ \dot{u} &= f \left(x^*, y^* \right) + u \frac{df}{dx} \right| + v \frac{df}{dy} \right| + O\left(u^2, v^2, uv \right) \\ \begin{array}{c} u &= \frac{df}{dx} & \frac{df}{dx} \right| + v \frac{df}{dy} \\ \text{fixed} g \\ \dot{u} &= \frac{df}{dx} & \frac{df}{dy} \\ \text{fixed} g \\ \dot{u} &= u \frac{df}{dx} + v \frac{df}{dy} + O\left(u^2, v^2, uv \right) \\ \end{array} \\ \begin{array}{c} By \text{ analogy}, \\ \dot{v} &= u \frac{dg}{dx} + v \frac{dg}{dy} + O\left(u^2, v^2, uv \right) \\ \end{array} \end{split}$$

Two seneral Diffy Qs, for Jisturbances!

$$\dot{u} = u \frac{df}{\partial x} + v \frac{df}{\partial y} + O(u^2, v^2, uv)$$

 $\dot{v} = u \frac{ds}{\partial x} + v \frac{dg}{\partial y} + O(u^2, v^2, uv)$

We can rewrite them, $\begin{bmatrix} u \\ v \end{bmatrix} = \begin{bmatrix} \frac{df}{dx} & \frac{df}{dy} \\ \frac{dg}{dx} & \frac{dg}{dy} \end{bmatrix} \begin{bmatrix} y \\ v \end{bmatrix} + quad terms$ $\begin{bmatrix} df & df \\ \frac{dx}{dx} & \frac{df}{dy} \end{bmatrix} \begin{bmatrix} the Jacobian \\ evaluated \\ evaluated \\ evaluated \\ et \\ \frac{dg}{dx} & \frac{dg}{dy} \end{bmatrix} \begin{bmatrix} the Jacobian \\ evaluated \\ evaluated \\ et \\ tx^{*}y^{*} \end{bmatrix} \begin{bmatrix} the Jacobian \\ evaluated \\ evaluated \\ et \\ tx^{*}y^{*} \end{bmatrix} \begin{bmatrix} the Jacobian \\ evaluated \\ et \\ tx^{*}y^{*} \end{bmatrix} \begin{bmatrix} the Jacobian \\ evaluated \\ et \\ tx^{*}y^{*} \end{bmatrix} \begin{bmatrix} the Jacobian \\ evaluated \\ et \\ tx^{*}y^{*} \end{bmatrix} \begin{bmatrix} the Jacobian \\ evaluated \\ et \\ tx^{*}y^{*} \end{bmatrix} \begin{bmatrix} the Jacobian \\ evaluated \\ et \\ tx^{*}y^{*} \end{bmatrix} \begin{bmatrix} the Jacobian \\ evaluated \\ et \\ tx^{*}y^{*} \end{bmatrix} \begin{bmatrix} the Jacobian \\ evaluated \\ et \\ tx^{*}y^{*} \end{bmatrix} \begin{bmatrix} the Jacobian \\ evaluated \\ et \\ tx^{*}y^{*} \end{bmatrix} \begin{bmatrix} the Jacobian \\ evaluated \\ et \\ tx^{*}y^{*} \end{bmatrix} \begin{bmatrix} the Jacobian \\ evaluated \\ et \\ tx^{*}y^{*} \end{bmatrix} \begin{bmatrix} the Jacobian \\ evaluated \\ et \\ tx^{*}y^{*} \end{bmatrix} \begin{bmatrix} the Jacobian \\ evaluated \\ et \\ tx^{*}y^{*} \end{bmatrix} \begin{bmatrix} the Jacobian \\ evaluated \\ et \\ tx^{*}y^{*} \end{bmatrix} \begin{bmatrix} the Jacobian \\ evaluated \\ evaluated \\ et \\ tx^{*}y^{*} \end{bmatrix} \begin{bmatrix} the Jacobian \\ evaluated \\ evaluated \\ et \\ tx^{*}y^{*} \end{bmatrix} \begin{bmatrix} the Jacobian \\ evaluated \\$

The hireanized System $\begin{bmatrix} i \\ i \\ i \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \\ \frac{\partial S}{\partial x} & \frac{\partial S}{\partial y} \end{bmatrix} \begin{bmatrix} y \\ y \end{bmatrix}$ $\vec{\chi} = A\vec{\chi}$ where $\vec{\chi} = \int_{v}^{v} 4$