Calculus of Variations

- as we will use it the calculus of variations fuses on finding (the conditions of) extrema for quantities that can he exposed as an integral.
- this might seem old but turns out to be an interesting way to develop an equivalent formulation of mechanics.
Canonical Conceptualization
using Calculus of variations we can show the shortest distance between two points is a line.
Consider a general path in 2D

The length of the fath is the integral from S_{1} to S_{2}

$$
l=\int_{S_{1}}^{S_{2}} d s
$$

\longleftarrow we want to minimize ℓ, which is minimizing
Let's write as in terms the integral. of $d x, d y$, and $y(x)$.

$$
d s=\sqrt{d x^{2}+d y^{2}}=d x \sqrt{1+\left(\frac{d y}{d x}\right)^{2}}=d x \sqrt{1+y^{\prime}(x)^{2}}
$$

so that,

$$
l=\int_{x_{1}}^{x_{2}} d x \sqrt{1+\left[y^{\prime}(x)\right]^{2}}
$$

$y^{\prime}(x)$ defines the path
To go further, we weed to posit an incorrect solution,

$$
\begin{aligned}
& Y(x)=\underbrace{y(x)}_{\text {correct }}+\underbrace{\alpha \eta(x)}_{\text {error to }} \\
& Y\left(x_{1}\right)=y_{1} \quad Y\left(x_{2}\right)=y_{2}
\end{aligned}
$$

And we need to investigate what happens in general,
Take a function that is being integrated,

$$
\begin{gathered}
f\left(y(x), y^{\prime}(x), x\right) \\
S=\int_{x_{1}}^{x_{2}} f\left(y(x), y^{\prime}(x), x\right) d x
\end{gathered}
$$

assume $y(x)$ minimizes S such that any function $Y(x)=y(x)+\alpha \eta(x)$ produces a larger integral, errorteran

$$
\int_{x_{1}}^{x_{2}} f\left(y(x), y^{\prime}(x), x\right) d x>\int_{x_{1}}^{x_{2}} f\left(y(x), y^{\prime}(x), x\right) d x
$$

Thus $S(\alpha=0)$ is a minimum, what conditions does that produce?

$$
\left.\frac{d S}{d \alpha}\right|_{\alpha=0}=0 \quad \begin{aligned}
& \text { finds the } \\
& \text { extrema }
\end{aligned}
$$

Start Long Derivation

$$
\begin{aligned}
& S=\int_{x_{1}}^{x_{2}} f\left(y(x), y^{\prime}(x), x\right) d x \\
& S=\int_{x_{1}}^{x_{2}} f\left(y(x)+\alpha \eta(x), y^{\prime}(x)+a \eta^{\prime}(x), x\right) d x \\
& \frac{d S}{d \alpha}=\int_{x_{1}}^{x_{2}} \frac{d}{d \alpha}\left[f\left(y(x)+a \eta(x), y^{\prime}(x)+a \eta^{\prime}(x), x\right)\right] d x \\
& \begin{array}{l}
=\int_{x_{1}}^{x_{2}}[\frac{d f}{d y} \frac{d y}{d \alpha}+\frac{d f}{d y^{\prime}} \underbrace{\frac{d y^{\prime}}{d \alpha}}+\frac{d f}{d x} \frac{d x}{d \alpha}] d x \\
\underbrace{\frac{d y}{2}}_{0}=\frac{d}{0}(y+\alpha(y)=\eta
\end{array} \\
& \frac{d y}{d a}=\frac{d}{d \alpha}(y+a y)=y \\
& \frac{d y^{\prime}}{d \alpha}=\frac{d}{d \alpha}\left(y^{\prime}+\alpha y^{\prime}\right)=y^{\prime} \\
& \left.\frac{d f}{d y}=\frac{d f}{d y} \frac{d y}{d y}=\frac{d f}{d y} \frac{d y}{d y}\right] \rightarrow 1 \text { why? Coustiny } \\
& \frac{d f}{d y^{\prime}}=\frac{d f}{d y^{\prime}} \text { same reason } \quad \begin{array}{l}
Y(x)=y(x) \\
\frac{d Y}{d y}=1
\end{array}
\end{aligned}
$$

$$
\frac{d S}{d \alpha}=\int_{x_{1}}^{x_{2}}\left[\frac{d f}{d y} y+\frac{d f}{d y^{\prime}} y^{\prime}\right] d x
$$

Set the integral to zero, $\left.\quad \frac{d S}{d \alpha}\right|_{d=0}=0$

$$
\int_{x_{1}}^{x_{2}}\left(\eta \frac{d f}{d y}+y^{\prime} \frac{d f}{d y^{\prime}}\right) d x=0
$$

Integrate by parts:

$$
\iint u^{\prime} v d x=[u v]-\int u v^{\prime} d x
$$

apply to $2^{\text {nd }}$ term "surface term" evaluated at x_{1}, x_{2}

$$
\begin{aligned}
& \int_{x_{1}}^{y_{2}} y^{\prime} \frac{d f}{d y^{\prime}} d x=\underbrace{\left[y\left(\frac{d f}{d y^{\prime}}\right]_{x_{1}}^{x_{2}}-\int_{x_{1}}^{x_{2}} y \frac{d}{d x}\left(\frac{d f}{d y^{\prime}}\right) d x\right.}_{x_{2}} \\
& \text { surface term } \\
& \begin{array}{l}
\text { sunrises } \\
\text { vanish }
\end{array}
\end{aligned}
$$

$$
\frac{d S}{d x}=\int_{x_{1}}^{x_{2}}\left(y \frac{d f}{d y}-y \frac{d}{d x}\left(\frac{d f}{d y^{\prime}}\right)\right) d x=0
$$

ok after all that,

$$
\frac{d S}{d \alpha}=\int_{x_{1}}^{x_{2}} y(x)\left[\frac{d f}{d y}-\frac{d}{d x}\left(\frac{d f}{d y^{\prime}}\right)\right] d x=0
$$

most be twi for any $y(x)$ so,

$$
\frac{d f}{d y}-\frac{d}{d x}\left(\frac{d f}{d y^{\prime}}\right)=0 \quad \begin{aligned}
& \text { Euler - } \\
& \begin{array}{c}
\text { Lagrowge } \\
\text { equ for ID }
\end{array}
\end{aligned}
$$

Return to our line problem

$$
l=\int_{x_{1}}^{x_{2}} \sqrt{1+y^{12}} d x
$$

here,

$$
f\left(y, y^{\prime}, x\right)=\sqrt{1+y^{\prime 2}}
$$

now let's apply the Euler-Lagraye formulation

$$
\begin{aligned}
& \frac{d f}{d y}-\frac{d}{d x}\left(\frac{d f}{d y^{\prime}}\right)=0 \\
& \frac{d f}{d y}=0 \quad \frac{d f}{d y^{\prime}}=\frac{1}{2}\left(1+y^{\prime 2}\right)^{-1 / 2}\left(2 y^{\prime}\right) \\
& \frac{d f}{d y^{\prime}}=\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}} \\
& \frac{-\frac{d}{d x}\left(\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}\right)=0 \quad \begin{array}{l}
y^{\prime}(x) \text { function } \\
\frac{y^{\prime}}{\sqrt{1+y^{\prime 2}}}=\text { of } x \text { punily so }
\end{array}}{l} l
\end{aligned}
$$

or,

$$
\begin{aligned}
& y^{\prime}=c \sqrt{1+y^{\prime 2}} \\
& y^{\prime 2}=c^{2}\left(1+y^{\prime 2}\right) \\
& y^{\prime 2}\left(1-c^{2}\right)=c^{2} \\
& y^{\prime 2}=c^{2} /\left(1-c^{2}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { So, } y^{\prime}=\sqrt{\frac{c^{2}}{1-c^{2}}}=\begin{array}{c}
\text { some other } \\
\text { constant }
\end{array} \\
& =m \\
& \frac{d y}{d x}=m=\text { const } \Rightarrow y(x)=m x+b
\end{aligned}
$$

