
Phys 321 - Fall 2024 Lagrangian Mechanics

Tutorial: Lagrangian Mechanics

Two masses m1 and m2 are connected by a massless rope of length `. As pictured, one of
them rests on a frictionless table, while the other is dangling over the edge. We’ll treat this as
a two-dimensional system, starting with Cartesian coordinates (x, y) as depicted. Note that in
particular, this means that block 2 is free to swing back and forth!

I. Choosing coordinates

A. Using the Cartesian coordinates of the two blocks (x1, y1) and (x2, y2), write down a set of
equations which represent all of the constraints on the system as given.

B. How many degrees of freedom does this system have?

C. Sketch a set of generalized coordinates on the diagram above.

D. [Discussion] By treating this problem as two-dimensional, we are ignoring the coordinates
z1 and z2, knowing that if z1(0) = z2(0) = 0, the system doesn’t move in the z-direction. What
about the coordinate x2 - is it ignorable? Why or why not?
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II. Setting up the Lagrangian

On the board, we’ve set up a common set of generalized coordinates (GCs) to use, and re-expressed
the Cartesian coordinates using them. Let’s go on to write down the Lagrangian describing this
system.

A. Write the potential energy U in terms of the generalized coordinates.

B. Evaluate the time derivatives of the Cartesian coordinates in terms of the GCs (and their
derivatives), and use your results to write the kinetic energy T .

C. Combine your answers from A and B to obtain the Lagrangian, L.

D. [Discussion] Find the equations of motion for both GCs by applying the Euler-Lagrange
equations. What do you notice about the equations of motion for the two GCs? What does this
tell you about the motion of the system?
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