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VIII. Stability of a Viscous Liquid contained between Two Rotating Cylinders.

BG1. Taylor,

Received March 21,—Read April 6, 1922.

[Plates 4 ana 5]

Part |I.—Theoretical.*
introduction.

In recent years much information has been accumulated about the flow of fluids
past solid boundaries. All experiments so far carried out seem to indicate that in all
cases| steady motion is possible if the motion be sufficiently slow, but that if the velocity
of the fluid exceeds a certain limit, depending on the viscosity of the fluid and the
configuration of the boundaries, the steady motion breaks down and eddying flow
sets in.

A great many attempts have been made to discover some mathematical representation
of fluid instability, but so far they have been unsuccessful in every case. The case,
for instance, in which the fluid is contained between two infinite parallel planes which
move with a uniform relative velocity has been discussed by Kelvin, Rayleigh,
Sommerfeld, Orr, Mises, Hopf, and others. Each of them came to the conclusion
that the fundamental small disturbances of this system are stable. Though it is
necessarily impossible to carry out experiments with infinite planes, it is generally
believed that the motion in this case would be turbulent, provided the relative velocity
of the two planes were sufficiently great.

Various suggestions have been made to account for the apparent divergence between
theory and experiment. Among the most recent isthat of Hopf, who points out that the
flow would be unstable if the two infinite planes were flexible, so that the pressure could
remain constant along them. There seems little to recommend this theory as an
explanation of the observed turbulent motion of fluids, for there is no experimental
evidence that instability is in any way connected with want of rigidity in the solid
boundaries of the fluid. The more generally accepted view that infinitely small

* A Summary of both parts of this paper will be found at *Roy. Soc. Proc.,” A, vol. 102, p. 541.

f All cases where there is relative motion between the fluid and the boundaries, thus excluding the case
of steady rotation of a liquid in a rotating vessel.
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disturbances are stable, but that disturbances of finite size tend to increase, seems to be
more in accordance with the experimental evidence, for it has been shown by Osborne
Reynolds that the velocity at which water flowing through a pipe becomes turbulent
depends to a very large extent on the amount of initial disturbance in the reservoir
from which the water originally came.

On the other hand it has not yet been shown that disturbances of small but finite
size do increase in such a manner as to give rise to the large disturbances observed in
cases of turbulent motion.

So far all attempts to calculate the speed at which any type of flow would become
unstable have failed. The most promising perhaps was that of Osborne Reynolds
who assumed an arbitrary disturbance in the flow and determined whether it would
tend to increase or decrease initially. As applied by Reynolds himself this method
does not lead to any definite result. It does not determine an upper limit to the speed
of flow which must be stable because some other type of disturbance might exist which
would increase initially at a lower speed of the fluid. Neither does it determine a lower
limit to the speeds at which the flow must be unstable, because the assumed disturbance
which initially increases might decrease indefinitely at some later stage of the motion.
It has been shown in fact that certain types of initial disturbance exist for which this
actually is the case.*

The method of Osborne Reynolds has been modified by Orr, who has determined
in two casesf the highest speed of flow at which all small disturbances initially decrease.
At this speed evidently any initial small disturbance will decrease indefinitely.

Orr’s method gives the only definite result which has yet been obtained in the
subject. The result, however, is merely a negative one, in that it affords no indication as
to whether flow at high speeds would be unstable. Orr’s result, for instance, in the case
of flow through a pipe of circular cross-section is that when the mean speed, W, of the
fluid is less than the value given by W = 180 D being the diameter of the pipe
and v the kinematic viscosity, the motion will be stable. The value of W so obtained
is less than 1/70th of the highest speed at which the flow has been observed to be stable
under suitable experimental conditions. Orr’s method therefore is of very little
assistance in understanding the observed instability of fluid flow.

Indeed, Orr remarks in the introduction to his paper : It would seem improbable
that any sharp criterion for stability of fluid motion will ever be arrived at mathe-

matically.”
Scope of the Present Work.

It seems doubtful whether we can expect to understand fully the instability of fluid
flow without obtaining a mathematical representation of the motion of a fluid in some
particular case in which instability can actually be observed, so that a detailed
comparison can be made between the results of analysis and those of experiment. In

* Orr, “ Stability or Instability of Motions of $ Viscous Fluid,” “Proc. Roy. Irish Acad,” 1907, p. 90.
f Loc. cit., p. 134.
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the following pages a special type of fluid instability is discussed and experiments are
described in which the results of analysis are subjected to numerical verification.

The attention of mathematicians has been concentrated chiefly on the problem of
the stability of motion of a liquid contained between two parallel planes which move
relatively to one another with a uniform velocity. This problem has been chosen
because it seemed probable that the mathematical analysis might prove comparatively
simple; but even when the discussion is limited to two-dimensional motion it has
actually proved very complicated and difficult. On the other hand it would be
extremely difficult to verify experimentally any conclusions which might be arrived
at in this case, because of the difficulty of designing apparatus in which the required
boundary conditions are approximately satisfied.

It is very much easier to design apparatus for studying the flow of fluid under pressure
through a tube, or the flow between two concentric rotating cylinders. The experiments
of Reynolds and others suggest that in the case of flow through a circular tube, infinitely
small disturbances are stable, while larger disturbances increase, provided the speed of
flow is greater than a certain amount. The study of the fluid stability when the
disturbances are not considered as infinitely small is extremely difficult. Tt seems more
promising therefore to examine the stability of liquid contained between concentric
rotating cylinders. If instability is found for infinitesimal disturbances in this case it
will be possible to examine the matter experimentally.

Stability of Viscous Liquid contained between Two Concentric Rotating Cylinders.

Previous work cm the subject.—The stability of an fluid moving in concentric
layers has been studied by the late Lord Rayleigh. Perfect slipping was assumed to
take place at the two bounding cylinders. If the motion is confined to two dimensions
his conclusion is that the motion is stable if the liquid is initially flowing steadily with
the same distribution of velocity which a viscous liquid would have if confined between
two concentric rotating cylinders. All two-dimensional motions of an incompressible
fluid, which do not involve change in area of internal boundaries are unaffected by a
rotation of the whole system, so that this result merely depends on the existence of a
relative angular velocity of the two cylinders.

In the case when the disturbances are assumed to be symmetrical about the axis,
Lord Rayleigh™ developed an analogy with the stability of a fluid of variable density
under the action of gravity. In this analogy the varying centrifugal force of the
different layers of fluid plays the part of gravity and the resulting condition for
stability is that the square of the circulation must increase continuously in passing from
the inner to the outer cylinder, just as the density of a fluid under gravity must decrease
continuously with height in order that it may be in stable equilibrium. This condition
leads to the conclusion that if the initial flow of the inviscid fluid is the same as that of a
viscous fluid in steady motion, this flow will be unstable if the two cylinders are rotating

* “ On the Dynamics of Revolving Fluids,” “Roy. Soc. Proc.,” A, 1916, pp. 148-154.
2 R2
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in opposite directions. If they rotate in the same direction then the motion is stable
or unstable according as 122R 2is greater or less than QgRx2. and £I2 are the angular
velocities of the inner and outer cylinders respectively, while Rxand R 2 are their radii.

The investigations of Kelvin, Orr, Sommerfeld, Mises and Hopf on the stability
of a viscous fluid shearing between two planes have not been extended to the cylindrical
case, but recently W. J. Harrison* has extended Orr’s method to find the maximum
relative speed which the two cylinders can possess in order that the energy of all possible
types of initial disturbance may initially decrease. In this work Harrison assumes that
the motion is two-dimensional. His value for Reynold’s criterion therefore contains
only the relative speeds of the two cylinders. It is unaltered if the whole system is
rotated uniformly at any speed. His criterion is therefore the same whether the inner
cylinder is fixed and the outer one rotated or vice versa.

The question has been investigated experimentally by Couette? and Mallock4

In the experiments of Couette the inner cylinder was fixed while the outer one
rotated. It was found that the moment of the drag which the fluid exerted on the inner
cylinder was proportional to the velocity of the outer cylinder, provided that velocity
was less than a certain value. As the speed of the outer cylinder increased above this
value the drag increased at a greater rate than the velocity. The change was attributed
to a change from steady to turbulent motion. Rayleigh’s theory of stability of an
inviscid fluid for symmetrical disturbances makes the case when the inner cylinder is
fixed stable at all speeds.

Mallock’s experiments yielded the same result as Couette’s, but in this case the
value of Reynold’s criterion was higher than that obtained by Couette.§

Mallock extended his experiments to cover the case in which the inner cylinder
rotated and the outer one was at rest. In this case he found instability at all speeds of
the inner cylinder. This result is in accordance with Lord Rayleigh’s theoretical
prediction for the case of an inviscid fluid, but on the other hand it seems certain, in
fact Lord Rayleigh|| has proved, that at very low speeds all steady motions of a viscous
fluid must be stable.

In spite of these differences between theory and experiment there is one point in
which Rayleigh’s “ inviscid fluid ” theory is in agreement with Mallock’s experiments,
namely, the large difference in regard to stability between the cases when the inner
and when the outer cylinder is fixed. This shows clearly that in the case when the
outer cylinder is fixed at any rate, the disturbance is not two-dimensional in character.
W hether it is actually of a symmetrical type as contemplated by Rayleigh, or whether
it is of some other three-dimensional form, remains to be seen.§

* W. J. Harrison, *Proc. Camb. Phil. Soc.,” 1921, p. 455.
f “Ann. de Chim. et de Phys.,” 6n®&ser., vol. 21, 1890.

% Phil. Trans.,” A, 1896, p. 41.

§ See Orr, ‘Proc. Roy. Irish Acad.,” vol. 27, 1907-9, p. 78.
| Raylteigh, ‘Phil. Mag.,” vol. 26, pp. 776-786, 1913.
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The most striking feature of Lord Rayleigh’s theory for inviscid fluids is the criterion
for stability when both cylinders are rotating in the same direction, namely,
n2R2> LLRi2. Owing to the construction of their apparatus no information as to
the correctness of this criterion of stability is obtainable from the experiments of either
Mallock or Couette.

Author’s Preliminary

For this reason | decided to construct a rough apparatus in which the two cylinders
could be rotated separately. The experiments performed with this apparatus are
described in a preliminary paper.* The results appeared to show that the criterion
D2R2> a iR is approximately satisfied in a viscous fluid, but that Rayleigh’s
result is not true for the case when the two cylinders are rotating in opposite directions.
The experiments also indicated that the type of disturbance which is formed when
instability occurs is symmetrical. These results encouraged me to embark on the
complicated problem of trying to calculate the possible symmetrical disturbances of a
viscous liquid contained between two rotating cylinders, and at the same time | started
to construct an apparatus for observing as accurately as possible the conditions under
which instability arises.

The complexity of the mathematical problem arises from the fact that it is necessary
to obtain a three-dimensional solution of the equations of motion in which all three
components of velocity vanish at both the cylindrical boundaries.

Stability for Symmetrical Disturbances.

Before proceeding to the details of the solution of the problem it may be helpful to
readers to give a list of the symbols employed. In Table I. the number of the page on
which each symbol is defined is given.

Table |I.—List of Symbols used, with number of page on which they first appear or
are first defined.

(V, Qu DR BRo, A, B, X), p. 294 ; (z,
(p, p, Y2 uu VWX A <€), p. 295; 3\ W v(KE),
(BO(«vr), Bx (dku K2 K3 ...), p. 296 ; (H)), p. 297 ;

(«m, V3 C4 A, brri), p. 298 ; (C5 C§ C7 cn), p. 299 ;
(0., Cqc'7dm, p. 300; (scn), p. 301; (L'm AX, p. 302;
(d), p. 304 ; ( XC'iC'j, <), p. 305 ; (y, ), p. 306 ;

(«, 13y, Jo 307 ; QLJ, p. 308 ; (A2, p. 308 ; (P), p. 30¢

(A3 e), p. 314 ; (/,), p. 315; (/2 ~P, PX, p. 316 ;

(*n> e A81j PF 319 j (VI p* 321 )
(M,, M2 ... M), p. 324.

* Taylor, ‘Camb. Phil. Soc. Proc.,” 1921.
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Steady Motion.

Let V be the velocity at any point of an incompressible viscous fluid in steady motion
between two infinitely long concentric rotating cylinders of radii Rxand R2(R2> R)).
If ris the distance of a point from the axis then it is known that

Y = Ar+B/r, (1.0)
when A and B are constants which are connected with the angular velocities il, and 02
of the two cylinders by the relations

12 = A+ B/Rj31

122 —A+B/R/. ]

Solving these equations A and B can be expressed in terms of R,, R2, 12, and 122

and
, " RMQj—R2Q3 Q"I-E.V/Ri¥

Ri2Z-R&2 1-R//R,3 * *= + + « = (12
p RAQMN-zx)
L= RAIRY " oo (1.3)

where ju= 12312,
Specification of Symmetrical- Disturbance.
Let u, V+v, w, be the components of velocity in a disturbed motion, U is the

component in an axial plane and perpendicular to the axis, is the component
perpendicular to the meridian plane and to the axis—that is, in the direction of the

undisturbed motion— withe component parallel to the axis. The scheme is r

in fig. 1

Fig. 1. Scheme of co-ordinates.

We shall assume that u, v and ivare small compared with V, and that the disturbance
is symmetrical, so that they are functions of z and tonly ; z isthe co-ordinate parallel
to the axis and t is the time.
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Equations Motion.

Neglecting terms containing products or squares of v, iv, the equations of disturbed
motion may be written

1 dpvZ _ die, 04 Bl iyl 423U 2.0
por r dzJ
.................... ,,
1dp dw 2 . dhw (2.2)
Pi = ~JF+T "WH+W I o,

where p represents pressure, p density, vis kinematic viscosity, and V,2represents the

operator EI + -|~ a
dr2 rdr
The equation of continuity is
du u dw~
1y ’ 2.3
fil #3)

The six boundary conditions which must be satisfied are

u=v 0 at r = Bxand r (2.4)
Assume as a solution
U = uxcos \z
vV = vxcos \z (2.5)
w = a\sin \z
where ux i\ and wxre functions of

Eliminating p between (2.0) and (2.2) equations (2.0) (2.1) (2.2) and (2.3) reduce to

Ar FABZ = 0 i (2.6)
v(viz A ~ V) VIRAWI oo )
e (2.8)

The boundary conditions are

Vi, =0atr=Bjand r = B2 . (2.0)
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The fact that there are no terms containing z in these equations shows that the
normal modes of disturbance are simple harmonic with respect to 2, the wave-length
being 2 n/Xo is a quantity which determines the rate of increase in a normal
disturbance. If a is positive the disturbance increases and the motion is unstable.

If a is negative the disturbance decreases and the motion is stable. If is zero the
motion is neutral. It will be seen from the way in which a enters into the equations
that it cannot be imaginary or complex unless vX, i0l are complex.

Bessel Functions used the

The solution of equations (2.6), {2.1) and (2.8) is developed by means of a type of
Bessel functions of order 1 which vanish at = Rx and R2 Let Jx{K) and
Wi (Ky  be two independent solutions of the Bessel equation,

A W I T (3-0)

The general solution of (3.0) is

I = CI M +CW, (¥,%%), mmceimesemsrecrresnenn (3.01)

where Cxand C2 are constants.

Let us now choose Cj and C2so that fanishes at r = Rxand
two equations which suffice to determine C1/C2 and

The equation for Kis

% 1Jy A | (3.10)
w,MD W,
Let the roots of this equation be kT k2, ks .in ascenc
The equation for CLU/C2 bs
02=iw vy _ (3.11)
C\ w,(krd
Writing Bx (k) for
(3.12)

and BO{ky) for the corresponding Bessel function of zero order, namely,

bOM =c¢.JoM +QW oM ,. (3.13)
we notice that

Cdr (3.14)

and that BO{Kr) does not vanish at and R2
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In order to develop any function of r in Bessel-Fourier expansions valid between
the limits Rxand R2 the following formulae will be used* —

(ic,r)Jn(IfirK ydr = -—-g (kR2 J'<<(*<R3ﬂngﬁﬁR2J;»@A)}

Downloaded from https:.//royal societypublishing.org/ on 30 January 2025

— N = @ («A)I L (FA)-vr.(* KDI".(iRD} + (3.20)
and

£'J°M rrfr=f {J*CR)+ (L- pjgt) U (*A)}
+ ... . (3.21)

where Jn(kv) is any Bessel function of order n, and ksand id may be real or complex
numbers. Particular cases of (3.20) and (3.21) when n—0 and n = 1 and Kand K
are roots of (3.10) are

(
Jﬂ:BO (itBO(*tr) rdr —o , (3.22)
I BXOB) Br(RN) FAT —0 (3.23)
JriF: B.2(kt)rdr —"{R&B®@(,,Ra) —R BR(.R)} = H.cccn (3.24)
j B2(nrdr=J{R&B.2(.R)-R.VB2(R)} = H, . . . (3.25)

Any continuous function/(r) of r which vanishes at Rjtand R2 may be developed in
a Bessel-Fourier series

Hr) = £8A (3.30)

This series is valid between the limits Rj and R2and

TOBIGT e e .. (3.31)

On the other hand any continuous function F (r) of r may be developed in a Bessel-
Fourier series

F(7) = 64 2 BB,(>/) o (3.32)

* Gray and Mathews, ‘ Bessee Functions,” p. 53.
VOL. CCXXIIl.——A. 2 S



Downloaded from https:.//royal societypublishing.org/ on 30 January 2025

298 MR. G. I. TAYLOR ON STABILITY OF A VISCOUS LIQUID

This series is also valid between the limits Rt and R2 and

= ”SER F (r) BO F AT (3.33)

It will be noticed that a constant term occurs in (3.32). At first sight this appears
surprising. In most Bessel-Fourier expansions this extra term does not appear
because it is possible to express a constant as a Bessel-Fourier expansion containing
all the other terms. In the case of the expansion (3.32) it will be found that it is not
possible to do this. The functions BO ( Ky, BO (),
set of normal functions without the constant.

Development of Solution of (2.6), (2.7) and (2.8) Bessel Functions.

It is found convenient to express uu vxand as st
because when these series are introduced into the equations (2.6), (2.7) and (2.8) they
yield linear relations between the coefficients of the various expansions. At the same
time the form (3.30) is specially convenient because a series of that form automatically
satisfies the boundary conditions at and R2.
Integral of (2.7),
Assume the following series for ux
N MKnT
amKnm).......
m— )
This satisfies the conditions ux —0 at Rxand R2 Substituting

it will be seen that the complete solution of (2.7) is
= + M+ 2. :
\Vj = C81(tYr)+C4(»X'r) rr%:l (4.10)

where i is \/ —1 and C3 and C4 are the two arbitrary constants occurring in the
complementary function

X3= X+ €r (4.11)
and
2Aqm (4.12)
v(Km2+ \* + a-/v)
The boundary condition VX0 at Rx and R2 gives

C3= C4= 0 (4.13)
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Integral of (2.8).

The complete solution of the equation (2.8) may be written in the form

WX =C5+C@a0 (iX'r)+ CW 0

m=1

where C5, C6, C7 are the three arbitrary constants which occur in the complementary
function—that is, in the solution of

U V' - X*-°h = 0, (4201>
JO and WO (iX'r)are two independent solutions of
(Vj’-X") JO(tVr) = 0.

Substituting (4.20) in (2.8) the following equation is obtained to determine the
coefficients cm

2 A(*, +Xrc, A B,(*«) = 2.(A+? 6.B .M
m=IA( ” ) (%) ( )ore rm=1

—i/2 (*m2+Af2) anmBj (ow). . . (4.21)
Substituting for bmfrom (4.12) and using the relation
0 BO(KiY) = - ki, (Kar)
(4.21) becomes

2 ¢, N (XV.)B,M = 2 v(d+A)a,Btm)

mel 7\ A/

+2 (A + i B, (/c,r). .. 4.22

\( |Tg))m:1 +)A) ( )

Treatment of the Equation of Continuity (2.6).
Substituting for ux from (4.0) and for wx from (4.20)
r_+ uor becomes 2/cmamBO(/onT ) , ..cccovveiviiiiiiiie (4.30)
so that (2.6) becomes
0= 2 (xmam+ A cmBo( #

In order that we may equate coefficients of BO (few) for all values of m it is necessary to
expand the terms inside the second bracket in (4.31) in a Bessel-FolLrier series of
the form (3.32).

25 2
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Expansion of C5+ Cal0(ix'r) + CW 0
Let

C5+Ca0(ix'r) + CW,, (ix'r) = C'5+ 2 ¢nBO(/c,,.r), .
m—1

then from (3.33)

dm = jcti;c j; BO(Girmr) {CyO0(ix'r) + CWO(iXV)} rdr.........

This integral is a particular case of (3.20). Remembering that
BrofatRi) =  (WCOR2) = 0,
it will be seen from (3.20) that

8 c6{RBOWNR Jo (tX%) -R A W ) Jo (tVRi)}

M H.*+X") +Cc7{RBO (KR '0

The constant term is

O.= °5¢+ aB {RaJ u(iX Ri) (YRI)}
+C, {RW', (»YR2) -R X (tYR)}]
Wrriting
C',= *VR2{C,JO0(«YR2+C,W',(*YR3}, .
0, = —iX'R, {CJO»YR) + CWOFYR)}.ovveeenen.

The expansion may now be written
C5+C,JU(ix'r) + C,W,, (ix'r) = C'6+C'e £ . B4* A B, (,,r
WUix'n) (ix°r) m=l|ImL!Nn+))( ) (1)

4-0/ (rr)

p R u
@5 +Im{fcd+X )

' FS%)'LEZ& BO(itR

(4.43)
(4.44)

(4.45)

(4.46)

Since C5, C6and C7 are entirely arbitrary constants, and the coefficients of C'6 and Qu7
are independent functions of r, we can regard the right-hand side of (4.46) as being the
complementary function of (4.201), the three arbitrary constants now being C'5, C'6

and C'7.

We are now in a position to make effective use of the equation of continuity (4.31).
Substituting (4.46) in (4.31) we can equate coefficients of BO (knt). In this way

and
A _ Kmm ,- lrv BO(GWRa) ,fit BO(GR])
X +Cr+U<-H,(M+X'9 +UH, (M+X)-

These equations give cmin terms of amand C'6 and C'7.

(4.47)
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Equations for Determining Coefficients am

Next substitute in (4.22) the value of cmgiven by (4.47).

There results an equation containing only au a2 am and C'6and C'7. It
is not possible, however, to equate coefficients of Bl ( ) directly on account of the
factor A+B/r2 which occurs on the right-hand side. In order to equate coefficients it
is necessary to expand every term of type (A-fB/r2) Bx(*s,/) in a Bessel-Fourier
series of type (3.30).

Let

2 Bxfar) = IcirBI far)+ far), . . (4.50)
so that

C« = Xf jK (A+B/r2 Bjfar) Bjfar) ..o, (4.51)

Substituting these series in (4.22) and also substituting for cmfrom (4.47), (4.22)
becomes

v B, | v (il tJ) | 2.\2\n | £2/.- od
. 1U ) N [°* H («%)._}_Aai)ﬁ 7 .TTAlzi + T - [+ VW™ + A [])
*
4A 2 A7 s 4.52
i\r  faf+ - ( )
We can now equate coefficients of BL in (4.52). The result is
Al nfil 0 0*2trfi-i

Ky -02!6\\’2'K2+A 2 A N TR

+Ce H,(«.R,) +C', A~  BO(r,R)) + («.»+Ad)

We have now a system of linear equations connecting ax a2, ... an C'Gand C'7. It
will be noticed that there are two more unknowns than there are equations. There
are, however, two more conditions of which no account has yet been taken which must
be satisfied by the solution : wxmust vanish at Rxand at Re-

using the equation of continuity (2.6) it will be seen from (4.30) that the conditions
that wxanishes at Rxand R2 are

B BB (5R) = 0 (4.54)

and

2 KIBMBO(MRD = O *  « (4.55)
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Stability of Symmetrical Disturbances.

Equation (4.61) may be regarded as a criterion for the stability of given initial
disturbances of the type specified by equations (2.5). If the value of a determined from
(4.61) is real, then the motion is stable or unstable according as a is negative or positive.
If a is complex the motion is unstable if the real part of a is positive. The motion is
then an oscillation of increasing amplitude. A complete discussion of stability necessi-
tates a search for complex roots of (4.61) as well as real ones.

Reasoning on the lines of Rayleigh's analogy it will be noticed that the type of
instability which ensues when a liquid whose density increases with height is disturbed
from its position of unstable equilibrium cannot be an oscillation of increasing amplitude.
Though Rayleigh’s analogy cannot be applied without modification to viscous fluids,
it seems unlikely that unstable oscillations of this type can exist when the disturbance
is symmetrical. It will be seen moreover in Part Il, that careful experiments over a
wide range of speeds have failed to detect them. It does not seem worth while, therefore,
to embark on the extremely laborious and difficult work which a search for complex
roots of (4.61) would entail. | have, therefore, limited the work which follows to a
discussion of the real roots of (4.61).

Direction in which it is Profitable to Continue the Discussion 4.61).

The object with which this work was undertaken was to search for a mathematical
solution of some case of fluid instability which can conveniently be subjected to
experimental investigation.

It is known that all possible types of steady motion of a viscous fluid are stable at
very low speeds.* If, therefore, one is examining experimentally the stability of any
type of steady motion which is dynamically possible at all speeds, it is convenient, in
carrying out the experiment, to start the flow at a slow speed and to increase the speed
slowly. If the motion is ever unstable it will become so at some definite speed, and the
experiment would naturally involve measuring that speed. The instability which then
sets in is that particular type of instability which occurs at the lowest speed, and
evidently for this type of instability a— 0.

If a be put equal to 0, so that X —X, (4.61) may be regarded a:

point at which instability will first appear when the speed of the initial steady motion
is slowly increased. Equation (4.61), however, gives us more information than that.
Up to the present the wave length of the disturbance which is equal to / has been
considered as entirely arbitrary. Equation (4.61) determines the speed at which
instability of arbitrary wave-length X first appears. One particular value of X will
correspond with the minimum speed at which instability can appear. In experiments
made with viscous fluids this value would be the one which would be observed

* Rayleigh “ On the Motion of a Viscous Fluid,” “Phil. Mag.,” 1913, vol. 26, pp. 776-786.
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when the instability first appeared. Probably it is the only one which could ever be
observed.
It will be seen that equation (4.61) can therefore be used to predict the dimensions
and form of the disturbance as well as the speed at which it will appear. Accordingly
in the numerical work which follows, when a = 0 (4.61) is regarded as an equation in
two variables. The ratio of the speed of the outer cylinder to that of the inner is
regarded as a constant, [x the speed of the flow is then proportional ¢
the speed of the inner cylinder, QI which is taken as one of the variables. This enters
into the equation in the quantities A and rcs. The other variable is A To determine

the instability which will first appear with any particular value of L12/ 12~
various values of Xare inserted in (4.61) and the one which yields the minimum
12 s taken.

To prove that the steady motion is unstable at slightly higher speeds, and stable,
so far as real roots of (4.61) are concerned, at slightly lower speeds of the cylinders, it
is necessary to show that a slight increase in 12 gives rise to a small positive value of
<7, while a slight decrease in 12x gives rise to a small negative value. It is shown later
that this is the case.*

Approximate Formulae.

If any particular values of Rxand R2 be taken, and also a particular value of /u, it
would certainly be possible to find the corresponding numerical values of 12 and from
(4.61). The labour involved would, however, be so great that it might take months
to perform the computation in a single case. To complete the investigation would
necessitate finding solutions for various values of R2/Ri and for a complete range of
11 from large negative to large positive values.

These considerations show that it would be practically impossible to undertake a
complete numerical discussion of the problem. On the other hand it will be shown in
the second part of this paper that the dimensions of the apparatus which was constructed
to investigate the problem, impose a limitation on the range of ratios R"Rx with which
it is possible to perform satisfactory experiments. In that apparatus it was found
that if the radius of the inner cylinder was much less than half that of the outer one,
effects due to the ends of the apparatus began to be appreciable and difficult to
eliminate, so that the initial motion ceased to be the same as that between two infinite
cylinders. Most of the experiments were therefore conducted with cylinders for which
R2—Ri was considerably smaller than either Rx or R2, that is to say the thickness of
the space between the cylinders was small compared with their radii.

Under these conditions it is possible to reduce (4.61) to an approximate form which
can be used effectively for numerical calculation. Writing d for R2—R x the work can
conveniently be carried to the second approximation, so as to include small terms
involving the first power of dfRxbut not those involving Rj)2

* See p. 311.
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Approximate Expressions for B0 (k) and Bt (fam).

Writing Kwr = & it will readily be seen that in order that Bx(Km) may vanish at
r= Rj and r= R2when djRxis small X must be a large number. Hence the ordinar
asymptotic expressions for Bessel functions can be used.

The asymptotic expansions used are correct to the second approximation, i.e., they
include terms in \jXx but not terms in las2. They are*

J\-kx JO(x) = cos (X" )+ — sin (as—
V7i-rrx WO (X) =sin (&- J )gXE— cos ( -
3 (5.0)
V7dtx  (as) = sin (as—j )+ ’ég_:os (as—n"
DirasWi () = ro.3 .
v WirasWi (X) = —cos ( 14) 35 Sin (as—j
(x)= {cC.J, (x+C'WI1IK)}V & ...
and let the constants C'j and C'2 be chosen so that
V7/tIBMas) — (@;)-1Sin (85— Tr+ €")ueevveveeveevee e e, (5.12)
Then from (5.0)
C',+ — C'2= cose''
8as
and (5.13)
—C'2+ C\ = sine.
2 8xs 1

Solving (5.13) and neglecting terms in 1/a;2 ' can be regarded as constant over the
range of values of & corresponding with the space between the cylinders, and the
following expressions are obtained for Ch and C'2

C'j = cos e+ -5- sin e, C'2= —sin cos e.
J 8as Bas

To find the corresponding expression for BO (as), note that
vArAIM™*) = {c\]JO(*)+cywO(a)}vShb;,
substituting from (5.14) and (5.0)
v74mBO(®) = & jc0s (@—"7r+e) + ~ sin {x—"Tr+e) (5.15)

* See Jahnke and Emde, “ Functionen Tafeln,” p. 99.
VOL. CCXXIIl.—A 2T
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Next replace X by K,rand putr = Ri+2/- Yy is then the distance of any point from the
inner cylinder. Choose €' so that

1-iX +€ = Ouvceveieeeeeis . (5.16)
Bi (ior) then vanishes at r=RI5 and (5.12) becomes
(oam)= (Ri+ ?)~4sin Ky, Ce (5.17)
and (5.15) becomes
BO(c )= (Ri+g/)~* jcos Ky + 2 (R \y ) K sin K * *
The values of kmare found by putting Bx(orR2) = 0, i.e., sin = 0. Hence
evidently
Kn— n ....(5.20)
where m is a positive integer. The successive values of Kmare
lc?,  2xI&, 3rrle?, ...
Writing k for néo that Kn= iuk the asymptotic expression for the Besse
functions up to and including first order small terms are
Bx(fowr) = R_+ y)~bin mK ...(5.21)
BO("®) = (Ri+«/)_i{cos micy+[2m: (~z+Rj)]-1 sinmicy} (5.22

It will be noticed that if we had attempted to proceed beyond the second approxima-
tion it would not have been found that km= mK and the work would have been much
more complicated.

Approximate Expressions for the Terms in (4.61).
In the first two rows of the determinant we can replace
BO("Rj) by (Ri)-* and BO(kaR2 by (-1)wR-* : (5.30)
Kn= mK and Xris the same as Asince = 0.
In the first two columns of (4.61) appears Hm From (5.30) and (3.24)
Ha= ARG Hi) = 2 o oo (5.31)

It remains to find the approximate expressions for gmand L'w. At this stage some
care is necessary. On referring to equation (4.51) it will be seen that £mis an integral
containing the expression A+B/r2which represents the angular velocity of any annulus
of liquid in the undisturbed state. When d is small compared with Ri and when
neither nor 0 2are very large the quantities A and B/r2 are both large and nearly
equal in magnitude, but of opposite sign. For this reason therefore it is necessary to
express A+B/r2in terms of Qly /u d and Rx. This has been done, the expansion being
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carried to the second approximation was to include terms containing the first power
of tR. It is

A+BIr2- {1"] (1-/*) +pg) +Llis(l 4% )\> (5.32)

where y— H2/Ri*
This expression is now substituted in (4.51) which becomes

(a+[8" +y sin sin sicykdy, . . . . (5.33)

where

QJ SI(I'M(I4IA y:|/\(|_|\/| ) o . (534)

Let Ky —1/, then

ﬂi/a +/37—i 4y 2\sin sin Sy dr....cccccverernnnee. . (5.35)
Jo\ m X/

If s is not equal to m

J sin mrj sin §]dn 0,
0

0, when + s even,

} f] sin nit] sin s
0

—4ms
@ 2—s2)2
4-7rms

i n2sill sin , m+s even,
Jo (M2-S2):2

—47TWS
(m2—

, when m +s is odd, * (5.36)

, m+s odd.
If s= m

Jo sin2Zmxdx 479

; wSin2msy = |-7r2 (5.37)

Inserting the values of a, y, Hn} it will be found after some reduction that
_ 8otsQ .(1-m) dd
o (m'—r'fe 7+

ZmsQAIl-n) ( Zd\

<'"'= W -SjS W "w+*eYen’ o (538)

and
mim= }Q (I +/*) “ (1 AJT (4 + Z@Z?rZ
2 T2
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Approximate Expression for Determinant.

On replacing the terms in the first two columns and the first two rows of the
determinant by their approximate values, some reductions can be made immediately.
The first column can be divided by 2/cd~IR 1% the second by 2/cd 1R 2“%the first row
by and the second by K3R2~h If 6 be written for XjK(4.6) becomes

0 i(i2+ed 2(22+e2? 3(32+02
0 —1(124020 2(22+02 -3(32+02

- 1 14 \0 2 1C3

(5.40)
2 oCj 14 2¢3
-3 3C1 312 14

Next perform the following operations on this determinanti—

(1) Divide the (n+2)th column and the (m-f-2)th row by m.

(2) Add and subtract the first two rows and the first two columns. This reduces
every alternate term to zero.

(3) Multiply all terms by #2{80Qx (1 —")}-1 but divide these factors out again from
the first two rows and columns. The equation Aj = 0 may now be written.

0 0 12+02 0 32+ 02
0 O 0 22+ 02 0
1 0 T 1 3d
(12222  2R1(12-3 2):

1 1

0 1 j
(22—122 52 (22—322 . (5.41)

3d 1

1 0 lj3

2Rj (32—122 (32222

1 3d 1
(42122 211, (42222  (42-3 22

Where AZ2is used as a symbol to represent the determinant and

i fTy(m»+e»)3 0 (I+A
8S,(1-Mm21 4AcW N2/ 4m2- 2

m
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Remembering that

-4 - g N - 01s T -
it will be found that
_ m2 {1+ _fx di 3\ P (m2+ (5.42)
16m2U -m RjV* 2mVZ2 02
where
p 7V (Rxt R2) (5.43)
2QW B2 - RaV/RID (1-/»)°
Since only occurs in A2 through the term P, P may be regarded as the variable.

It is required therefore to find the maximum possible value of P consistent with (5.41).
To do this it is necessary to insert a number of different trial values of 6 in A2 and
then to solve (5.41) to find P in each case. The value of O for which P is a maximum
determines the dimensions of the eddies into which the flow will resolve itself when
instability sets in. At first sight this seems to be a very complicated piece of work,
but it is possible to perform certain operations on A2 which greatly increase the rapidity
with which its roots converge to definite values. These operations will now be
explained.

Limiting Casewhen n is nearly equal to 1.

When [gis nearly equal to 1 the diagonal terms of A2 which contain the factor (1 —
become large compared with all the other terms. Consider the determinant obtained

by taking the first m¥? rows and columns of A2 If this determinant be ¢
each term will contain me factors, and the greatest terms will be those co
maximum number of factors Lw from the diagonal. In the limit when //->1 these

terms will become infinitely great compared with all the others. Since two of the factors
of each term must come from the first two rows and two from the first two columns,
neither of which contained any of the Lmterms, it follows that no term can contain
more than m—2 factors of type Lw. The limiting value of the determinant will
therefore be found by taking all terms which can be obtained by choosing a term from
each of the first two rows, a term from each of the first two columns and 2 diagonal
terms.
Each term is of the form

(L*1'1 L")~ &),

where s and t are two integers, one of which is even and the other odd. It is evident
therefore that the limiting value of Az can be expressed in the form

12+& 32+ 02, 52+ (2 N/22+e2+ 4 2+e2

Lt A2= (lj|ljAdj...Lm...
(j[jag;...Lm...) L L3 \ 12

. (5.50)
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Evaluation of the Greatest Root of (5.41).

It is clear that the greatest value of P consistent with the equation A2= 0% is the
greatest root of the equation

i2|:r02 32|:re2
— + - +...=0 . . .
Y Is .. . (5.51)
Writing
Fo— 1- P
1+n

Neglecting Ki(\-1—_I_S,b/which ->0as "~ 1 (5.51) becomes

12(12+ fl2) 32(32+ 02 . (5.53)
i-JV +e33 i-" (3 2+ed»
For any particular value of @i is a simple matter to approximate to
of (5.53), which evidently lies between P' = (12-f02-3 and P' = 02(32+02)-3.A fter

a few terms the 1 in the denominator becomes small compared with
~ (m2+ 023
\%

Neglecting it, the \ (m-fl)th term is then

mad2
“ P'(m2+022

The rest of the series including this term is then

60 (m+2)2

- F I( +e23 ((m+2)2+e22+" (5.54)

After a few more terms it will be possible to neglect the 02 which occurs in the
denominator of each term. If the first term inside the bracket of (5.54) for which

it is possible to do this is
S2

(s2+eyy ,

the remainder of the series including this term is

S2+ G5+ 2)1+ (s + 4)2+'" ¢

This series can be summed exactly.
Proceeding in this way it was found in a rough calculation that the greatest roots of
(5.53) are associated with values of 02 in the neighbourhood of 1. Accordingly the

22+ 02 .
* The greatest root of + 0 can easily be shown to be less than the greatest root

of (5.51).
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values of P' were calculated to three significant figures for the series of values
2 — 0-8, 0*%9, 1-0, 1*1, 1-2. The corresponding values of P' are 0-0562, 0-0569,
0-0571, 0-0569, 0-0563. The variation of P' with O is shown in a curve in fig. 2. On

0570
0565
+05 60
0*8 0*9 1*0 1<l 1.2
Fig. 2.
looking at that curve it will be seen that the maximum value of P' is 0-0571. It
occurs when 02=1+00. There is no reason to suppose that the correct value

is exactly 1, but it almost certainly lies between 0-98 and 1-02.

Stability whenthe Cylinders are rotating in the same direction with slightly different
velocities.

We are now in a position to make some definite predictions about the stability of
the flow when /i is nearly 1—that is, when the cylinders are rotating in the same
direction with slightly different velocities. In the first place the motion changes from
being stable to being unstable when i2x passes through the value given by*

! _ w (Ib+Rj /I _—
\2QM%2(1-jrv/iV H w )/ \1L+M/
It seems evident that at speeds below this the motion must be stable while at higher
speeds it must be unstable, but it is perhaps worth while to prove that this is the case
by writing down the equation for 0 and showing that it changes from a negative to a
positive value as 12 increases through the value given by (5.6).
Retaining terms in a from (4.61) the equation equivalent to (5.53) is

0-0571. (5.6)

o= 2 K+ -00> i e (5.61)
0Ll —— (m2+  {m2+ 92+ x)2

where X =— If P' differs from the value it would have if 0 were 0 by a small

KV
quantity 5P', X will also be small and from (5.61) it will be found that
m2j1 + (m2+ 02 AP m2(m2+ d2
X 2

3 ' m odd _ ' D) ' '
M- (m2+ 023 g {1-9Cm '+ 1l7}

(5.62)

* From (5.43) and (5.52).
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Since the series inside the square brackets are positive when P' is positive, it appears
that X is positive when <5P is negative. Also from (5.43) and (5.52)

. 0st

P! 0,
where is the change in LL corresponding with <6PX Hence when is
positive, i.e., when the speed increases above the speed for which 0, is positive

and the motion is unstable. When the speed is slightly less than the speed for which
a = 0, the steady motion is stable for symmetrical disturbances.

Equation (5.6) gives a positive value for L"2if is less than R12/R2. If, therefore,
Q2 Qi < Ri2/Raa the niotion is unstable for values of greater than that given by
(5.6). If &2/tlj > Ri2R 2the value of Oj given by (5.6) is imaginary and the motion
is stable unless a negative root of (5.53) can be found. It is obvious that there are no
negative roots of (5.53) because a negative value of P' makes every term in the series
on the left-hand side of the equation positive. The sum of the series, therefore, cannot
vanish.

Equation (5.6) shows that Lord Rayleigh’s criterion for stability of an inviscid fluid
is a limiting case of the criterion for a viscous fluid. Lord Rayleigh’s criterion was
that a fluid would be stable at all speeds if Qa/LL > Ri2ZR2, and unstable if
Cl2/Q.1< Ri2/R2. The former of these is equally true for viscous fluids, but the
latter is modified in the sense that if Qa/ < Rj2/IR2 the motion is unstable only
if £2Xis greater than the value given by (5.6). It should be noticed that if the analogy
on which Lord Rayleigh based his theory is strictly adhered to, the case when
Q2 < Ri2/R2 would be unstable at all speeds, even in a viscous fluid; for a
heterogeneous fluid in unstable equilibrium under gravity is not more stable when it is
viscous than when it is inviscid.

The second prediction which can be made is that in the unstable case the type of
instability which will form is periodic along the length of the cylinder, with a wave-
length almost exactly equal to twice the thickness of the layer of fluid between the
cylinders. This is a consequence of the fact that = 1, for the wave-length of the
unstable disturbance is 2 n\l —  2njKD=

2d when 0=1. s (5.7)

It will be shown in the second part of this paper that the symmetrical type of
instability does actually occur under experimental conditions, and that both these
predictions are verified with considerable accuracy.

Numerical Approximations when 1— is not small.

When 1—n is not small the first few diagonal terms may be of the same order of
magnitude as the neighbouring terms which are of the form (m2—w2)-2, but on passing
down the diagonal of A2 the (m+ 2)th term contains a factor o
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Pm4, while the other terms in the neighbourhood of the diagonal decrease with the
factor (m2—w2)-2. This is largest when m—n= 1, when it i
terms, therefore, rapidly become very great compared with all other terms. It appears,
therefore, that in this case the effect of the parts of the determinant which are situated
far from the top left-hand corner may be expected to be of the same kind as that of
the same terms in the case when 1—/Kk is small. The difference is that in the case

when 1— fs small allthe diagonal terms are large, whereas in the cas
is not small, all except a few terms near the top left-hand corner are large.
We have seen that in the case when > 1 no terms ar

in the first two columns, the first two rows and the diagonal terms.
Hence in this case

0 0 13+0a 0 32-f62

0 0 0 23+03 0

1 0 Li 0 0 L
L tA2= . (6.00)
A
0 1 0 13 0
1 0 0 0 13
. 12403 3!+0
—LjL L 6.01
J 9..( Li 12 L, ( )

The product form (6.01) of A2 was obtained from (6.00) by direct expansion of A2
but it might equally well have been obtained by performing the following series of
operations on it: Change the signs of the first two columns. Next divide the third
column by Lx, the fourth by L2, the fifth by La, ..., etc., then to the first column add
the third, fifth, seventh, ..., columns, and to the second the fourth, sixth, eighth, ...,
columns, so that

|2+e2 h3;+e\ .. 0 |2+_02 0 3't+02
L, Li
0 22+303 42+£ 2 0 22403 0
L tAa= ! ! . (6.02)
0 0 1 0 0
0 0 0 1 0

The effect of all the distant terms is now concentrated in the first two diagonal terms
which are the same as those in (6.01).
VOL. ccxxm.—a. 2 u
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Determination of Roots of A3= 0.

To determine the roots of the equation A3 = 0 it is necessary to assume a value
for 6 and a value for P, and to calculate the values of the determinant formed by
taking the first 1, 2, 3, 4, ..., rows and columns of A3. Owing to the fact that
all the diagonal terms after the first two are equal to 1 the actual numerical value of
the determinant converges to a definite limit. Taking a value of 6 and a series of
suitable values of P, the value of P for which A3 changes sign is found by interpolation.
This is the root of A3= 0 which corresponds with the particular value of 6 chosen.
By taking a series of suitable values of 6 the maximum root of A3= 0 is found, and
also the corresponding value of 0.

In evaluating A3 for any value of P and 6 the method adopted was first to find the
numerical values of the terms, then to eliminate successively the third, fourth, fifth, etc.,
rows and columns. The effect of this procedure was to alter the values of the first
four terms in the top left-hand corner of A3. It was found, however, that after this
operation had been repeated a few times no further alteration occurred, the effect of
the distant terms being too small to be appreciated. By treating the determinant in
this way it became obvious how many rows and columns should be taken in order to
evaluate the root to the order of approximation which was desired.

Evaluation of P and 6 for the case when fi lies between 0 and 1.

The case first solved was that for which d is negligible compared with Rx—that is
to say, the space between the cylinders is very small compared with their radii.

Taking ~ = 0 and 6= 1 it was found that if the first term only of A3 is t:

root is P = 0-0571. This result has already been given (  p. 311). On taking four
rows and columns the rootis P = 0-0577, an increase of 1 per cent. On taking six rows
and columns the further change in the root is of order 0-1 per cent. It appears,
therefore, that if an accuracy of 1 per cent, is desired it is unnecessary to take more
than four rows and columns of A3. Moreover, it was found that practically the whole
change from 0-0571 to 0-0577 is due to the terms involving the factor (22—I2)-2.

Under these circumstances it appeared probable that the root of A3= 0 could be
obtained by adding a small correction of about 1 per cent, to the highest root of f x—0,
where/! is written for the first term of A3, namely,

la+ 02, 32+ 02, _
jl= T + qJqpm +

It has already been pointed out that as /i -> 1 the root of A3= 0 approaches that
of fx—0. It is clear that for all values of p between 0 and 1 a small correction to
the root of f x= 0 can be found which will give the root of A3= 0.

2u 2
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The value of this correction which will be called djP may be found as follows : Taking
four rows and columns of A3the part of A3 due the extra terms containing (22—I12)-2
is found to be

(/-m m jK /.-71)
(2j-1j)LL2

where/2is the second diagonal term in A3, namely,

224+e3 4a+e?
Lj L4 +--

If Pxis the root off Xx—0, Pi+dxP is the root of A3= 0, if

1* 12+#2/ f 22+ 63
0A3.p V1 Lj Ala La

ap 1 L1 3(22—i24 “ ‘ (7.00)
The approximate value of A3 is so that
f'At  f a[/a, T ayi
ap Jlap ap * * * * . (7.01)
and since f x= 0,
AA3 _ r 2fx
ap  Jfap . (7.02)
Differentiating it is found that
al /I'+e’”SL, 3ateaals \
’ ’ 7.03
ap \ 18 ap 12 ap +77* * ( )
And, since in this case Lm= +M - +#33
om t1 B 6 WEF)
aL,, _ (7.04)
aP 16m2#2
Hence
a/x w N (m2+ #34
- 7.05
aP  16#2wadd m2,2 ( )
Hence combining (7.00) and (7.05)
fla+#2A /r 23+ #2
T3 V1 x A2 L2 1 . (1.08)

@ LAk mam
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134-02 - 23+03
- Jj2
positive. Hence "P is positive.

In this expression

Greatest root off = 0.

The root, P', of the equation

mo {i —P' (m3+ (7.07)
has already been evaluated for a certain range of value of 0.
It is evident that the root of
m (IF _P'{m'+fffIff
is P 1+ .\ E\/
| —H
In the case when 6 — 1, the root 0 is, therefore,
p = oxo571 1tm (7.08)
Evaluation of Correction to Hoot 0 and to O.

Using this value (7.08) in evaluating the various constituents of (7.06) it is found
that

<P = 0%00056 (- —2-) i, 7.09
%1 +M/) ( )

This correction tends to zero when // -> 1 as was to be expected.

The next step is to find out whether this correction varies sufficiently with 0 to alter
the value of P which corresponds with the maximum root of A3= 0. On inserting
the values 02= 1*2 and 02= 0*8 in (7.06) it was found that <€ increases with
increasing values of 6, but that the increase is not sufficient to alter materially the
maximum value of P. It is found that there is a slight increase in the value of 6 which
corresponds with the maximum value of P, but in the range of // from-0 to 1 it is too
slight to be worth discussing.

For the case when d is negligible compared with Ri the greatest root of A3, therefore,
occurs when 0= 1and it is

P = 0-0571 +0-00056 (11U ) coovveveerreannee. . (7.10)

fx =— ,f2 =, La and fu are negative
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Root of A3= 0 when d/Rx ismall, hut is not neglected.
Returning now to the expression (6.03) for A3, it will be seen that the ratio d/Rx
occurs in every term, either in the factor e or in Lm The terms containing e are small
compared with the terms which give rise to the terms 0*00056 in (7*10) and as
we are only considering at present the range of value of for which this is small compared
with 0*0571 fi+£), it follows that all the terms in e can be neglected. The correction
u-/v
to the expression (7.10) due to the fact that d/Rx is not indefinitely small therefore
appears in the analysis only as a change in the values of the terms Lw; and in these

terms it always appears as a correction to be subtracted from the factor | . This
correction may be divided into two parts.

(@) The part d/2Rj which is the same for all values of m, and (h) the part ngm
which becomes very small when m is large, but amounts to \ of d/2Rj for 1 If

the second part (b) did not exist, then evidently the approximate root of A3= 0 given
by (7.10) would still apply if X i ———éy\{(]ere substituted for |It|)l(.

On looking at the expression (5.42) it will be noticed that owing to the factor (m2-)-02)3
which occurs associated with P in the expression for Lm the part contributed by the

1+n

whole of the factor n becomes very small compared with
1« R-El H 2m2 a y P

(02-f-m2)3P/02 as m increases. Hence it appears that if the part () were taken as

constant and equal to A—3d for.all values of m, very little error would be caused. To

nil

estimate its magnitude, the errors in L1?L2 L3and L4due to this erroneous approxi-

mation have been calculated for the most unfavourable case which will be required,

namely, P = 0*05, 0 — 1, g =0, d/Rx= J. The errors are

cent.; in L3, 0*1 per cent.; in L4, 0%02 per cent. The errors in LnLa ... are therefore
never so great as 1 per cent, if this approximation is used.

The object with which these approximate calculations were undertaken was to provide

a basis for comparison with experiments. As measurements of the speed at which

instability sets in can hardly be expected to attain an accuracy greater than 1 per cent,

it does not seem worth while to attempt to attain greater precision than this. We

shall therefore substitute (%+ —)} ~ or 0*652 for fj+ -V in (5.42).
(or —h S LG "

The value of P is therefore to this order of approximation given by the expression

= 0* -0*652 __ +0*00056 f
Pr= 07057 lij \X—u |

cinLD



Downloaded from https:.//royal societypublishing.org/ on 30 January 2025

CONTAINED BETWEEN TWO ROTATING CYLINDERS. 319

This, together with the definition of P, (5.43), forms the criterion for stability. The
expression (7.11) may be expected to hold for positive values of g from 0 to 1, but it
holds over a greater range than this. It holds in fact till the second term ceases to be a
small correction. In calculating numerical values for P it was found that this occurred,
in the cases considered, at about the value = —0*5.

Evaluation of the Root of A3= 0 when is Negative.

In the case when gis negative, that is when the cylinders rotate in opposite d
it is necessary to take account of several rows and columns of A3. Being unable to
discover any approximate formula of the type given in (7.11), it was decided to select
particular values for g,and B2, substitute in equation (6.03), and determi
maximum value of P and the corresponding value of 0 by arithmetical exploration.
It was expected that the results so obtained would bear a qualitative resemblance to
the results obtained with any other negative value of g.

The particular values chosen were g = —1-5, Rx= 3*80 c.m., R2— 4-035 c.m.
These values were chosen because, at the time this part of the work was begun, some of the
measurements to be described in the second part of this paper had already been carried
out by means of an apparatus which consisted of two cylinders of these two radii.

A certain amount of preliminary exploration was first undertaken. Assuming the
value 0 =1 the values of the determinants formed by taking the first 1, 2, 3, 4, ... etc.,
rows and columns of A3 were found. Calling these An, A22, A3 ... it was found that
they formed a series which appeared to converge rapidly to a definite limit after the
fourth or fifth terms ; it was found also that the limit towards which the series
appeared to converge changed sign as P passed through a value in the neighbourhood
of 0-001.

Further exploration seemed to show that the root increased as 0 increased ; accordingly
after a number of trials to determine more precisely the range within which the root
lay, the values of All5 A22, ..., A8 were calculated for values of P which appeared to
lie on opposite sides of the root. These calculations were performed for the following
values of 02, 1-5, 2-0, 2-25, 3-0, 4-0, 5-0. In this way the table (1) was constructed.
In this table the values of 0 and 02 are given in the first two columns. The third
column contains assumed values of P. The fourth to the eighth columns contain the
values of A4 A.., A®, A7and A8 The last column contains the value of P obtained
by assuming that A8 varies uniformly with P in the small range between the two
calculated values on either side of the root.

On inspecting the table it will be seen that the convergence of the determinant is
very rapid after the fourth row and column, and that very little advantage is gained
by using eight rows and columns instead of six or seven. On the other hand it was
necessary to carry the calculations as far as A8in order to be certain that this was the
case.
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Table Il.—Values of Determinants used in calculating Roots of A3= 0when = —1-5.
0 62 P AMXI0-4 ABx 104 AGXI10-4 ATIXIOa A8Bio.s CAlculated
0*0012 - 0*55 - 1*33 - 0*86 — —
1*225 1+5- x0*00124
0*0013 + 1*08 + 0*66 + 1*06 — —
0*0012 - 0*08 - 2*12 - 1*30 - 1*19 - 1*18
1*414 2-0. «0*001286
0*0013 + 0*88 - 0*58 + 0*10 + 0*%17 + 0%20
0*0013 + 0%96 - 1*07 - 0*19 - 0*14 - 0*13
1*50 225 «0*00131
0*0014 + 2*07 + 0*57 + 1*03 + 1*19 + 1%22
0*0013 + 2*38 - 2*36 - 1*06 - 0%90 - 0*86
1*73 3*0n «0*00134
0*0014 + 3*50 + 0*09 + 1*09 + 1*23 + 1*26
0*0012 + 4*61 - 7*30 - 6*18 - 4*%57 - 4%63
2*0 J 0*0013 + 6*81 - 0*67 - 0*35 - 0*12 - 0*07 «0*00130

0*0014 + 4*%40 + 2*48 + 3*37 — —
0*0012  + 13*91 - 3*61 - 0*83 - 041 - 0%31
0*0013 + 16*1 + 2*8 + 4*8 + 5%2 + 5*%3
2*236 5+0< >0-00121
0*0014 + 16*9 + 6*5 + 8*3 + 8%4 + 8%5

0*0015 + 17*5 + 9%65 + 10%9 + 11*0 + 11*1

To find the maximum value of P the roots given in the last column of Table II. were
plotted on a diagram, the ordinates being the corresponding values of 0. This diagram
is shown in fig. 3. It will be seen that a smooth curve can be drawn through all the

Fig. 3.

points, and that the maximum height of this curve occurs when — 1*73, and that at
this point
P = 0%00134. .o e . (7.13)
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In calculating the determinants given in Table Il it was found that the effect of the
correction due to all the terms containing e in A3was small compared with the correction

1=l
1—(i
neglected, the work just described is applicable to other values of d and Rx but the

0-652 d/Ri which is subtracted from If the effect of the terms containing e be

value of pmust be altered so that the vlalue of LI Zi E?(—GSZ" is the same as it was

in the case which has been calculated.
In this way, for instance, in the case when Rx= 355 R2= 4035 it is found that
the values 6 —1-73, P = 0-00134 apply when

ix 1-347 (7.14)

Stream Lines when Instability sets

The results which were obtained in the preceding section will be used later in
comparing the actual disturbances which arise in unstable fluid flow with those predicted
theoretically. In the meantime it is of interest to construct some diagrams showing
the stream lines which are to be expected when instability sets in. These diagrams
are useful in designing apparatus for testing the mathematical predictions, because
the selections of the most suitable experimental method for demonstrating the instability
of the flow, if it exists, will depend on the particular type of instability which is
expected.

The particles of water flow in complicated three-dimensional curves. On the other
hand the component of velocity in any meridian plane through the axis can evidently
be represented by the Stokes Stream Function In the general case \k is related to

u by the relation u— " ,sothat
ror

etos (A

A m=1
Dropping the factor e~A which does not affect the forms of the stream lines, in the
approximate case when the asymptotic expression (5.21) is used for Bx(*nm), this

becomes
\Is = COS (Okz) 2 @msin MKY......ocooovvvrrreiann, (7.21)

To construct the stream lines it is necessary therefore to calculate the constants
Two cases will be considered : (a) the case where [x is nearly equal to 1, and ( ) the case
where x = — 15.

(a) Stream Lines when e 1,
directly from an inspection of equation (6.00). Retracing the operations by which
6.00 was derived from (5.43) and leaving out an arbitrary constant which determines
the magnitude of the disturbance, it will be found that when m is odd

VOL, CCXXIII.— A, 2 X
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°1+1
mLm
where
. 7.22)
a{1-0%0571 (ma+1)3}, ¥ (
Lem? T (ma+ 1) 3}
when m is even
am= 0.
The values of aobtained from (7.22) are given below (Table I11).
Tabte IlI.
= -j-0+210 a- = —0-0070 a9= -0-0013 al3= -0-00045
a3= -0-0306 a7 = -0-0028 an = -0-00074 —

Using these values of amthe values of 'Zamsin muy were calculated for values of

Lo

N

o

N

>

@

5

o - - - -
r@glng fromo to d, or 7 t/k. These are given in Table 1V, and are plotted in the curv
e}

D

S Table IV.

oy

£

) 1 § Oand18 0-5and17-5 1land 17. 2and 16. 3and 15,  4and 14
o

=3 ~amsin niKy 0 0-0038 0-0109 0-0408 0-0733 0-1138
>

ke

[}

A 18yld 5and 13 6 and 12 7and 11 8 and 10 9 —

®

§‘ sin 0-1513 0-1855 0-2136 0-2300 0-2347 —
.\8-

E of fig. 4. It will be seen that the curve touches the axisat = 0and as was to
£ be expected.

o

B d e

8

O

E

o

(@]

Fig. 4. Radial velocity ux on an arbitrary scale. Case when cylinders rotate in same direction,
Ix positive. Figures on under side of base line are values of *yjd in degrees.
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The value of was next calculated for the case when d is small compared with R”,

so that the factor y'R 1\ ¥ (7.21) can be regarded as a constant. Curves wel
drawn for various equidistant values of J,the nur
multiplied by a factor so as"to makejy/- = t at the cent

f/l, coloured
fluid

cylinder

Fig. 5. Stream lines of motion after instability has set in, » positive.

the boundary. These curves are shown in fig. 5. Their spacing gives an idea of the

velocity of the flow at any point. It will be seen that the circulation in a section of

the fluid by an axial plane consists of a series of vortices which fill square compartments
2 X2
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extending from the inner to the outer cylinder. Alternate vortices rotate in opposite
directions as though they were geared together.

(b) Stream Lines when u= —1*5, 0= 1*73.—In the case when —1*5 it was
necessary first to calculate the minors of A3 Using the values = —1*5 0= 1*73,
P = 0*00134, Rj = 3*80, R2= 4*035, the values of Lmwere first calculated, and the
complete expression for A8 given below (7.23) was written out.

559*2 0 24*0 0 174 0 113 0
0 601 *3 0 117*2 0 149 0 85
0*21 1*899 -1 1*862 0*21 0*35 O 0*002

1*258  0*005 0*669 -1 0*580 0*005 0*009 O

0*008 0*832 0*008 0*670 -1 0*160 O 0*002

0*374  0*011 0*027 0*011 0*296 -1 0*050 O

0*005 0*153 O 0*038 0*005 0*097 -1 0*018
0*065 0*001 0*005 O 0*020 0*001 0*033 -1
Using the first seven rows and all the eight columns, the eight minors formed by leaving
out successively the 1st, 2nd, 3rd, ... 8th columns were then found. Denoting them

by M1? M2, M3 ... M8their values are given below (Table V).

Table V.
Mj = +1-G0X104 M3 = —980 X104 Mb= -3*47 xIO4 M7= -0*09 xIO4
M2 = —1-60 X104 M4= +6-75X104 M6= +0*82 xIO4 MB= -0*06 XIO4*

To calculate au a2, ... from these minors it was necessary to take account of the
operations which were performed on the determinants AlI5 Aaand A3 after the constants
amhad been eliminated. Retracing these operations it was found that when m is odd

(MI+M +)(01+mD, (M g -“ e (7.24)

« .

and when m is even
«,, = -(M3+M,s)(eJtmad(mLI-1....coovvvirrrrnnn, (7.25)
Since all the terms can be divided by any factor without altering their relative values,
the first factors of (7.24) and (7.25) were divided by 160 which is the numerical value of
Mxor M2. For large values of mthe first factor in (7.24) then becomes equalf to 1and

= (A24 M2 (WL M)~ Lerrreereeereeoeeoeeeseessesessessneees (7.26)

* Ms is probably slightly inaccurate owing to the method of reduction, but as will be seen later such an
inaccuracy would.have no appreciable effect on the result.

t The part due to Mm+2 is small compared with the part due to M1 so that errors iu amdue to errors
in Mm+2 become unimportant as mereases.
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Using the formulae (7.24) and (7.25) for the first six terms and (7.26) for the higher
terms, the following series of values were found for am(  Table VI).

Table VI.
«l = -123*5 a3= —07*8 «5= 21* a7= 9* a9= 446
@ = -189 a4 = 18*2 a6 = 13*8 «8= 6e4 axy=3*4
Using these numbers for amthe values given in Table VII for 2  sin were

found. In Table VII, d, the space between the cylinders, is divided into 18 equal parts
corresponding with changes of 10° or A/18 in

Table VII.
18yld 0 and 18 1 2 3 4 5
'2a,,9n may 0 55 164 284 348 341
18yld 6 7 8 9 10 1
-a tl sin 288 213 121 39 -14%6 -47*8
18] lid 12 13 14 15 16 17
I'aHsin m xy -59*0 -51*0 -38*8 -28*1 -16*8 -5*0

From these numbers the value of uxis found by dividing by (Rj-f-2/)-*
The curve given in fig. 6 shows the relation between uxand y. It will be noticed that

Fig. 6. Radial velocity uxon an arbitrary scale ; case when cylinders rotate in opposite directions,
= 1*5,
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as was to be expected the curve touches the axis at either end. The interesting thing
about it, however, is that it crosses the axis at a point roughly half-way between the
two cylinders. At this point the radial component of velocity is zero. This means
that there is a certain cylindrical surface between the two rotating cylinders which
divides the flow. The instability therefore produces a flow which is divided into two
separate regions.

The stream lines of this flow were next calculated in the same way as in the previous
case. They are shown in fig. 7, which is printed on the same scale as fig. 5 to facilitate

coloured
fluid

outer
cylinder

Fig. 7. Stream lines of motion after instability has set in, x= —1*5.

comparison between them. It will be seen that the circulation now consists of two
types of vortices. An inner region which extends out from the inner cylinder,
about half-way to the outer one, is filled with vortices rotating alternately in opposite
directions. These are very similar in character to the vortices found in the case when
f,= 1. They still fill rectangular compartments, and these compartments are still
nearly square, though not so accurately square as in the case when = 1. An eflect
of restricting the inner circulation to a region which is only about half the thickness of
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tlie total space between the cylinders appears to be to reduce also the spacing of the
other sides of the rectangular boundaries of the vortices so that the compartments
are still nearly square.

In the space outside the inner system of vortices is an outer system which is very
much less vigorous than the inner system. These outer vortices rotate in the opposite
directions to the inner ones with which they are in contact.

It seems probable that the physical explanation of this phenomenon is that the
surface where the velocity is zero in the steady motion divides the space between the
two cylinders into two regions. In the inner region the square of the circulation decreases
outwards, so that centrifugal force tends to make the flow unstable. In the outer
region the square of the circulation increases so that centrifugal force tends to make the
flow stable. The surface where the fluid is at rest in the steady motion is not coincident
with the surface separating the two systems of vortices in the disturbed motion. In
fig. 7 the section of the former surface is shown as a dotted line, and it will be seen that
the inner system of vortices extends outside the region where centrifugal force tends to
produce instability. That this would be the case might have been anticipated on
general grounds.

A remarkable feature of the vortex systems shown in fig. 7 is the great difference
which exists between the vigour of the inner and outer systems. The stream lines are
drawn for values of ip differing by 50 units on an arbitrary scale. There are six of these
in the inner system and only one in the outer system. To show up more clearly the
general features of the circulations, two intermediate stream lines have been drawn for
the values ip= +25 and y =—25. These are dotted to differentiate
other stream lines. The shaded portions of the diagrams, figs. 5 and 7, will be referred
to in the second part of this paper.

Part Il.—Experimental.
Previous Experimental

The stability of the steady motion of a viscous liquid between two concentric rotating
cylinders has been studied experimentally by Mallock and by Couette. These
experiments have already been mentioned. The object which both these experimenters
had in view was to determine the viscosity of water by measuring the drag exerted by a
rotating cylinder on another concentric one which was at rest, the space between them
being filled with water. The instability noticed by both of them was inferred from the
fact that the relation between speed of rotation and viscous drag of the liquid ceased
to be a linear one when the speed of rotation was increased beyond a certain limit.
Using this test for instability, Mallock found that steadv flow was unstable at all

forA- VT
cZiudo ctC " f cC * B o I |
______ L * Vo * 7



Downloaded from https:.//royal societypublishing.org/ on 30 January 2025

CONTAINED BETWEEN TWO ROTATING CYLINDERS. 327

tlie total space between the cylinders appears to be to reduce also the spacing of the
other sides of the rectangular boundaries of the vortices so that the compartments
are still nearly square.

In the space outside the inner system of vortices is an outer system which is very
much less vigorous than the inner system. These outer vortices rotate in the opposite
directions to the inner ones with which they are in contact.

It seems probable that the physical explanation of this phenomenon is that the
surface where the velocity is zero in the steady motion divides the space between the
two cylinders into two regions. In the inner region the square of the circulation decreases
outwards, so that centrifugal force tends to make the flow unstable. In the outer
region the square of the circulation increases so that centrifugal force tends to make the
flow stable. The surface where the fluid is at rest in the steady motion is not coincident
with the surface separating the two systems of vortices in the disturbed motion. In
fig. 7 the section of the former surface is shown as a dotted line, and it will be seen that
the inner system of vortices extends outside the region where centrifugal force tends to
produce instability. That this would be the case might have been anticipated on
general grounds.

A remarkable feature of the vortex systems shown in fig. 7 is the great difference
which exists between the vigour of the inner and outer systems. The stream lines are
drawn for values of idiffering by 50 units on an arbitrary scale. There are six
in the inner system and only one in the outer system. To show up more clearly the
general features of the circulations, two intermediate stream lines have been drawn for
the values ip= +25 and ijp= —25. These are dotted to dif
other stream lines. The shaded portions of the diagrams, figs. 5 and 7, will be referred
to in the second part of this paper.

Part |l.—E xperimental.

Previous Experimental Results.

The stability of the steady motion of a viscous liquid between two concentric rotating
cylinders has been studied experimentally by Mallock and by Couette. These
experiments have already been mentioned. The object which both these experimenters
had in view was to determine the viscosity of water by measuring the drag exerted by a
rotating cylinder on another concentric one which was at rest, the space between them
being filled with water. The instability noticed by both of them was inferred from the
fact that the relation between speed of rotation and viscous drag of the liquid ceased
to be a linear one when the speed of rotation was increased beyond a certain limit.
Using this test for instability, Mallock found that steady flow was unstable at all
speeds of the inner cylinder when the outer one was fixed, but that when the outer
cylinder was rotated the flow was stable for low speeds, unstable for high speeds,
and sometimes stable and sometimes unstable over a range of intermediate speeds.
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No indication of the existence of any sharp or definite criterion for stability was
observed.

These results disagree entirely with the theoretical predictions made in the first part
of this paper. According to the foregoing theory the motion should be stable even at
high speeds when the inner cylinder is at rest. When the outer cylinder is at rest the
flow should be stable at low speeds of the inner cylinder, and there should be a definite
speed at which instability should suddenly make its appearance as the speed is increased.

This disagreement between theory and experiment may be due to a variety of causes.
It may be that the types of disturbance which actually arise are not symmetrical
about the axis. On the other hand there are other possible causes besides instability
which could give rise to a non-linear relation between speed of rotation and
viscous drag in Mallock’s experiments. In the first place the lengths of Mallock’s
cylinders were very little greater than their diameters. His outer cylinder for instance
was 7*8 inches diameter while the depth of water used was only 8*5 inches, and the
thickness of the layer of water between the cylinders was 0-915 and 0-42 inches, in his
two sets of experiments. If the cylinders were infinitely long or if the thickness of the
layer of fluid were very small, the steady two dimensional flow contemplated in
Mallock’s experiments would no doubt occur, and a linear relation might be expected
between speed and viscous drag. On the other hand in the neighbourhood of the bottom
of the liquid the flow cannot be two-dimensional, and unfortunately the cylinder on
which Mallock measured the viscous drag extended practically down to the bottom
of the liquid. It therefore certainly penetrated into the region where the linear law
does not hold. Maltock recognised this, for in the course of his experiments he
substituted an ingenious mercury bottom for the rigid bottom with which he began.
By this means he hoped to eliminate, partially at any rate, the effect of the bottom.
The very large effect which this device had on his results showed that in his original
experiments, at any rate, a large part of the drag which he observed might be
attributed directly to the effect of the bottom. On the other hand, there is little
evidence to show that it succeeded in eliminating this effect completely, or even that
the bottom effect was not still large in the case when the outer cylinder was at rest.

It appears therefore that Mallock’s experiments do not afford conclusive evidence
of the existence of instability in the case when the outer cylinder is at rest, at any rate
at slow speeds of the inner cylinder.

In the case when the inner cylinder is at rest Mallock’s experiments appear more
conclusive, because he observed sudden and violent changes in the drag on the inner
cylinder. On the other hand it is by no means certain that this instability would have
occurred if the inner cylinder had been supported differently. It has been shown by Von
Hopf that instability may arise from flexibility in the bounding walls of a fluid in
steady motion. In Mallock’s experiments one of the cylinders had to be supported
so that it could turn without resistance. This condition must, | think, have prevented
this cylinder from being held so rigidly that small lateral movements were impossible.
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Design ofApparatus.

In designing apparatus for testing the conclusions reached in the first part of this
paper, care was taken to eliminate as far as possible the disadvantages from which,
in the author’s opinion, Mallock’s apparatus suffered. In the first place the cylinders
were made as long as possible so as to eliminate end effects. They were 90 cm. long
and the outer one was 4*035 cm. radius. In most of the experiments the thickness of
the layer of liquid between the cylinders was less than 1cm. In the second place both

Stone Floor

Fig. 8.

cylinders were held in heavy plane bearings at each end by heavy iron supports fixed
to a stone floor and to the walls of the Cavendish Laboratory.

The general arrangement of the cylinders is shown in fig. 8. In that diagram the
various parts of the apparatus are indicated by letters. The weight of each cylinder
was taken by a steel ball, B, resting on a flat plate, C, below, and fitting into a conical
centre in the end of the shaft which it supported. The bearings, J, were long and of
exceptionally good fit, so that lateral motion could only occur by bending of the whole

VOL. CCXXIIl.— A. 2Y
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apparatus. In order that this might be minimised as far as possible the inner cylinder
was fixed on a mild-steel shaft, A, of large diameter (f inch).

It is clear for the reasons given above that the methods of previous observers would
not give the information required. It was necessary to devise some method which would
show not only the exact speed at which instability occurs, but the type of motion which
ensues.

The method employed by Osborne Reynolds in the case of flow through a circular
pipe was to inject a thin continuous stream of colouring matter into the centre of the
stream. When the breakdown of steady flow occurred the motion of the water could
then be studied in some detail. In the present case a similar method was used, but
certain modifications were necessary in view of the special type of motion which was
expected. The actual stream lines in the cases calculated in Part I. are complicated
spiral curves which are not symmetrical about the axis. A method designed to show up
or mark a single stream line would therefore yield results which would be difficult to
interpret.  On the other hand if colouring matter could be emitted simultaneously at
all points of a circle placed symmetrically in the fluid, the motion of the sheets of
colouring matter so produced would, if the motion were symmetrical, give exactly the
information required, namely, the component of motion in an axial plane.

This condition was attained by emitting coloured liquid from six small holes placed
on a symmetrical circle near the middle of the inner cylinder. The inner cylinder, I,
was made by threading a large number of turned and bored sections made of paraffin
wax on to the central steel shaft. These were held and pressed together by brass discs,
L, of the same diameter at each end of the cylinder. In one of the paraffin sections
were six very small symmetrical holes, K, which were connected together by means of
a small groove, M, turned on the inner curved surface of the section. The coloured
liquid was supplied to this groove by means of a small brass tube, N, which was let into
a slot cut in one side of the central steel shaft. This duct led finally through a small
central hole, 0, in the upper end of the central shaft to a brass box, P, which was filled
with the coloured liquid. To force the coloured liquid down the duct the milled head,
Q, was turned. This pressed on a diaphragm of thick rubber, R, and so forced the colour
out through the six small holes, K.

In order to see the colouring matter it was necessary to make the outer cylinder of
glass. This requirement gave rise to considerable trouble on account of the difficulty
of producing an accurately turned, bored, ground and polished glass tube 90 cm. long.
The difficulty was surmounted by Messrs. Powell, of the W hitefriars Glass Works, who
succeeded in producing a satisfactory glass tube 8 inches long, 8-07 cm. bore and 10*5
cm. external diameter. This was turned, bored, roughly polished, and the ends faced
square. It was then mounted in iron castings, S, which were fitted accurately on to the
upper and lower sections, Tx and T2, of the outer rotating cylinder. These castings
will be seen at the top and bottom of the photographs, figs. 9-16, Plates 4 and 5. The
inside bore of the outer cylinder did not vary by as much as ~ mm. in its whole length.
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The whole apparatus was driven by an electric motor fitted with a governor so that
the speed could be kept constant. The ratio of the speeds of the cylinders could be
varied by means of a continuously variable speed gear.

Method of performing Experiments.

In performing an experiment the box, P, was filled with a solution of fluorescene,
which was usually made of the same density as water by mixing with ammonia or alcohol,
though in some experiments it was made slightly heavier. This fluorescent solution was
found to be very good for eye observations, but it was useless when photographs were
to be taken. A solution of eosin made up to the same density as water by mixture
with alcohol was found to be the best for photographic purposes.

The space between the two cylinders was filled with water from which air had been
expelled by boiling. In cases when the fluorescene solution was slightly heavier than
water the liquid coming out of the six small holes fell down in six streams which kept
fairly close to the inner cylinder. In cases where the fluorescene solution was of the
same density as water some of the water was run out from the bottom of the apparatus,
and at the same time fluorescene or eosin was forced out through the six holes. The
downward movement of the water drew the fluorescene out into six thin vertical streams,
which were found to be extremely close to the surface of the inner cylinder. The
apparatus was then immediately started rotating at a slow speed and the shearing
motion of the liquid in the annulus between the cylinders caused the six vertical lines
of colour to broaden laterally till after a short time all the coloured liquid formed a
uniform thin sheet on the surface of the inner cylinder.

The ratio of the speeds of the two cylinders was fixed during each experiment by
the setting of the variable speed gear. The speed of the motor was then gradually
increased till instability occurred.

Case when Cylinders are Rotating in the same direction.

In this case we have seen that the type of motion to be expected when instability
sets in is the same for all positive values of y less than RX/R 2- The flow in meridian
planes consists of vortices contained in square partitions and rotating alternately in
opposite directions. The effect which this system of vortices might be expected to
have on the film of coloured fluid close to the inner cylinder can be seen by referring

to fig. 5, Part I. Since the motion is evidently to the first order of small quantities
a steady motion, the coloured liquid which lies close to the surface = 0 will remain
close to that surface. The surface \fs —0 consists of the square

the vortices are contained. The coloured liquid will therefore mark out the edges of
these square partitions. In fig. 5 the shaded portion represents a possible form of the
coloured region after instability has set in.

2y 2
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General Result.

On observing the apparatus from the side it was found that provided the experiment
was carefully carried out, the instability made its appearance at a certain speed in every
case when it was expected and in no case when it was not. This speed was quite definite,
and the measurement could be repeated on different occasions with an accuracy of
about 1 or 2 per cent.

The phenomenon which was observed was the same in each case. The layer of coloured
liquid suddenly gathered itself into a series of equidistant films whose planes were
perpendicular to the axis of rotation. These films were in each case spaced at a distance
apart nearly equal to twice the thickness between the cylinders. The films seemed to
spread out till they reached the inner surface of the outer cylinder. They then spread
upwards and downwards close to that surface till they covered it with a thin film of
coloured liquid. This film was almost invisible because it could not be seen edge-on.
On the other hand, when the upward and downward flowing sheets met at the points
half-way between the out-flowing films they formed inward-flowing films of the same
type as the outward-flowing ones. The resulting appearance after the motion had
been going on for about two or three seconds was that of a series of thin equi-distant
planes of coloured fluid spaced at a distance equal to the thickness of the space between
the cylinders. In fact, after the first few seconds the motion appeared to get to a steady
state in which it was impossible to distinguish the outward-flowing films from the
inward-flowing ones, though all of them were extremely sharply defined.

Photographs of the Stream Lines.

Considerable difficulty was experienced in obtaining satisfactory photographs of the
phenomenon because when eosin was used instead of fluorescene a more concentrated
solution was necessary ; and it was found difficult to make up this solution so that its
density remained the same as that of water when it was surrounded by water. It
frequently happened in fact that the coloured liquid formed two columns, one going up
and the other down, when strong eosin solution mixed with alcohol was used. In
spite of this and other difficulties some fairly good photographs were obtained.

Fig. 9, Plate 4, shows the appearance of the films shortly after their formation.
This photograph shows a motion which is not so regular as most of those observed, but
it has the advantage that one can see some of the intermediate stream lines marked
out by some colouring matter which had got away from the surface of the inner cylinder
before the instability’set in. A particularly noticeable one occurs in the third partition
from the bottom on the left-hand side. The photographs were taken with an ordinary
magnesium flashlight apparatus.

Verification of Predicted Spacing of the Vortices.

It will be noticed that the partitions shown in figs. 9,10 and 11, Plate 4, appear square.
This square appearance, however, is deceptive. The refraction of the glass and water
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magnify the horizontal dimensions without altering the vertical dimensions of objects
in the water. On the other hand, the outer edge of the pattern is cut off altogether
by refraction. These two effects neutralise one another so that the general appearance
of the partitions in the photographs is square.

The phQtograph (fig. 9, Plate 4) was taken when the radius of the inner cylinder, Rj,
was 2-93 cm. ; R2, the radius of the outer cylinder, was the same in all cases, namely,
4-035 cm. The distance apart of the partitions as measured on the original photograph
was 0-47 cm., the external diameter of the glass cylinder on the photograph was 4-7 cm.
and its true diameter was 10*5 cm. The true distance apart of the partitions was,
therefore, 10-5x0-47/4-7 = 1-05 cm. The difference between the radii of the two
cylinders was 4-035—2-93
of the theory of Part I.

1105 cm. Hence we have our first numerical verification

Predicted spacing of vortices 1-105 cm.

Error 5 per cent.
Observed Y " 105 ” P

To show the effect of change in thickness of the layer of fluid a photograph of the
bands or partitions, taken when Rx= 3-25 cm., is shown in fig. 10, Plate 4. On
measuring this spacing on the original photograph it was found that twelve of them
occupied 3*95 cm. The magnification was 0-4095. Hence

True spacing of partitions was 0-804 cm.]
Predicted spacing was 4 +035—3-25 0-785 ., }Error 31 per cent.

In order to show the accuracy with which these bars of coloured liquid space them-
selves when the experiments are carefully performed the photograph (fig. 11, Plate 4)
is shown. The fineness of the partitions shown in this photograph approximates to the
fineness which can easily be obtained with the fluorescene used for eye observations,
but it is not actually quite so good.

Casewhen the Cylinders Rotate in directions. ,

When ft is negative—that is, when the cylinders rotate in opposite directions, only
one case has been worked out completely, namely, that in which // = —1<5, Rx= 380,
R2= 4-035. The characteristic differences revealed by the analysis between the
motion in this case, and that in the case when s positive, are —

(@) The spacing of the vortices is reduced in the ratio 1-73 : 1. The predicted
spacing of the vortices in this case is in fact (4-035 —3-80)/1-73 = 0-136 cm. ;
and
(h) The vortices in contact with the inner cylinder only extend out about half-way
to the outer cylinder instead of extending right across the fluid annulus.
(@) Spacing of Vortices.—To verify the conclusions reached in regard to the spacing
of the vortices a number of measurements were taken when the radius of the inner
cylinder was 3-80 cm., the values of granging from -f-0-65
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The results are given in Table VIII. and they are shown in the form of a curve in
fig. 12. In this curve the abscissae represent and the ordinates represent the corre-

sponding spacing of the vortices in centimetres. The predicted points, theoretical
Table VIII.—Giving the Observed Spacing of the Vortices for various values of p in
the case when = 3-80 cm. and U2= 4*035, so thatd  0*235 cm.
Pe Observed Spacing of Vortices.
0*65 0*241, 0*245.
0*596 0*25, 0*24, 0*238, 0*25.
0*40 0*244, 0*250, 0*244.
0 0*236, 0*235.
-0*388 0*230, 0*%24, 0*236.
-0*492 0*237, 0*238, 0*235.
-0*640 0*232, 0*%228.
-0*716 0*201, 0*203, 0*198.
-1*00 0*150, 0*165, 0*160, 0*157.
-1*20 0*156, 0*165.
-1*37 0*143, 0*146,
-1*78 0*09, 0*105, 0*115.

values of d/6, are shown by means of circles and the observed points by means of dots.
The curve is drawn roughly through the dots. Unfortunately, owing to an oversight,

no observation was taken for the value p ——1%*5, but

point lies almost exactly on the observed curve.

Observed points «

Calculated points O

-1-5 -1-0 -0*5 0 0*5 1*0.
Fig. 12. Comparison between observed and predicted spacing of vortices for various values of p;
case when Rj = 3*80 cm., R2= 4*035 cm.
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It will be noticed that the predicted result that the spacing of the vortices should

be the same for all positive values of pand equal to the th

is also strikingly verified. It will be observed that the spacing of the vortices does
not begin to decrease much till phas a considerable

() In the case when = 3-80 it was found difficult to verify the prediction that
the vortices in contact with the inner cylinder should extend no further than about
half-way out to the outer cylinder because the refraction of the glass cylinder prevented
the extreme edge of this region from being seen. A simple calculation showed that
this cause would make it impossible to see the outside edge of the inner circulation
if it extended to within 0-37 cm. of the outer cylinder. For this reason, therefore,
the inner cylinder was reduced to a diameter of 4 cm. and the photographs shown in
(Plates 4 and 5) figs. 13, 14, 15 and 16 were taken. The values of were not measured
very accurately but in figs. 13 and 14 it was about —1-05; in fig. 15 = —2*0 ;
and in fig. 16 = —2-3.

On looking at the photographs it will be seen that the results predicted by theory
are completely verified. The inner vortices do not penetrate to the outer parts of

the fluid, the spacing of the vortices decreases as increases, and the inner partitions
remain of the same shape, approximately square, while they decrease in size with
increasing values of —p.

The * spacing of the vortices ” is half the wave-length—that is, half the distance
apart of the centres of the ring-like figures shown in the photographs 13-16 into which
the coloured liquid, initially close to the surface of the inner cylinder, suddenly forms
itself when instability sets in.

Critical Speeds at which Instability appears.

Perhaps the most successful feature of the analysis contained in the first part of thi®
paper is the accuracy with which it predicts the critical speeds at which instability
appears. A number of sets of measurements were made covering a range of values
of & from —oo to + oo. These will now be discussed in detail.

Case when fxis positive and > 1 or infinite, i.e., when the Outer Cylinder Rotates Faster
than the Inner One and in the same Direction, or when the Inner Cylinder is at
Rest.

Under these circumstances the motion was found to be completely stable even at the
maximum speed of which the apparatus was capable.*

This result is in direct contradiction to that of Mar1ock, though it is in accordance
with the theoretical prediction which takes account only of symmetrical disturbances.
The difference might be attributed to the greater rigidity of the present apparatus,
and perhaps to its greatly increased length.

* Five revolutions of the outer cylinder per second.

negative



Downloaded from https:.//royal societypublishing.org/ on 30 January 2025

336 MR. G. I. TAYLOR ON STABILITY OF A VISCOUS LIQUID

Critical Speeds when pis less than K 2/R 2.

Three complete sets ot observations were taken: (1) with Rx— 3 00, (2) with
Rx= 3-80, (3) with Rx= 3 -55Each observation consisted
of rotation of the cylinders at which the vortices appeared, i.e., the speed when the
partitions between the vortices suddenly spread out from the inner cylinder. In each
case one or two rough readings were taken to find the approximate speed at which
instability appeared. The governor was then set for this speed so that large changes
in current produced only small changes in the speed. The final reading was then made
by increasing the speed fairly rapidly* till the instability was on the point of occurring,
then increasing the speed very gradually. In this way it was found that readings
could be repeated with an average error of about 2 per cent.

When it was found that this order of accuracy could be obtained, it became clear
that the temperature would have to be read with an error of 0*2° C, or less, in order
that viscosity might be known accurately enough to make full use of the accuracy of
the stability measurements.

The speed of one of the cylinders was measured both just before and just after the
instability occurred, and the observation was rejected if it was found that too great
a jump in speed had been made. With the governor employed on the motor it was
found that the variations in speed with a given setting of the apparatus were less than

in obse

| per cent. The ratio, p,of the speeds of the cylinders was measured |

over a period of two or three minutes.

In order to make the results comparable with one another it is necessary to divide
the speed in each case by the coefficient of kinematical viscosity.f These coefficients
were taken from Kaye and Laby’s physical tables. The results are given in Tables
IX., X. and XI. In column 1 of each table is given the value of In columns 2 and 3
the observed values of Ox/ and Q2/i/, where fix and Q2 are
of the inner and outer cylinders, and vrepresents the coefficient of kinematical viscosity
which is equal to (the coefficient of viscosity)-4-(density). In column 4 in each table is
given the theoretical value of calculated for the corresponding value of p from the
criterion given in (7.11), Part 1. On comparing columns 3 and 4 it will be seen that
the agreement between theory and observation is extremely good in the cases where
Rx = 3*80 and Rj = 3-55. It is not quite so good in the case where Rx= 3*0, but
as the observations in this case were made before it was realised how high a degree of
accuracy could be obtained in stability measurements, the temperature was only
observed roughly once or twice during the experiments. Some uncertainty, therefore,
exists as to the exact value of vin this series of measurements.

* The governor did not begin to act till a certain speed had been attained.
| Two geometrically similar motions are also dynamically similar if the speed, divided by the coefficient
of kinematic viscosity, is the same in the two cases.

the an
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Table IX.—Showing observed and calculated speeds at which instability first appears
when Rx— 3*00, R2= 4*035 cm.

il Al* ajv

l observed. observed. calculated. observed. observed.
0-552 83-7 152-0 (04 -1-48 —130-0 87-9
0-530 51-6 97-0 105-2 -1-67 —163-0 97-0
0-520 40-1 77-2 84-9 -2-0 -236-0 118-0
0-455 28-8 63-5 50-5 -2-37 -326-0 137-0
0-423 21-6 51 *1 44-5
0-415 18-6 44-9 43-5
0-410 19-3 47-1 42-6
0-359 14-4 40-2 37-5
0-245 8-6 35-3 31-6
o 0 30-3 27-6

-0-33 -10-6 32-1 30-0

-0-33 —11*1 33-5 30-0

-0-565 -21-0 37-2

-0-60 -24-8 41-4

-0-703 -29-8 42-3

-0-905 -47-1 52-0

-1073 -67-0 62-8

-1-285 -102-6 79-6

Table X.—Observed and calculated speeds at which instability first appears when
= 3-80, R2= 4*035 cm.

" r 7 il P
P R2/"- observed.  calculated. [x e observed.  calculated.
0-864 790-0 914-0 860-0 -0-553 -121-6 219-1 222-0
0-846 530-0 626-0 669-0 -0-621 -141-0 227-0 230-0
0-810 362-2 447-0 477-0 —1-0 —312-0 312-0
0-788 340-0 431-5 424-0 -1-0 -320-0 320-0
0-764 298-5 390-5 383-0 -1-0 -313-0 313-0
0-788 278-0 353-0 424-0 -1-16 -400-7 345-3
0-741 245-3 330-8 354-0 -1-26 -462-0 367-0
0-666 196-3 294-0 294-0 -1-36 -539-2 396-6
0-666 190-2 284-3 294-0 -1-428 -592-0 415-5
0-631 172-8 273-8 276-0 -1-605 -718-0 447-5
0-554 136-2 246-0 248-0 -1-714 -845-0 493-0
0-450 99-1 220-1 225-0 -1-766 -876-0 496-0
0-422 90-7 217-0 220-0 -1-916 -1005-0 524-0
0-397 83-0 209-0 216-0 -1-953 -1056-0 540-4
0-274 54-9 200-1 203-0 -1-996 -1104-0 553-0
0-160 30-4 190-2 196-0 -2-24 -1362-0 608-0
0 0 190-8 191-5 -2-51 -1672-0 666-0
0 0 189-2 191-5 -2-865 -2113-0 737-0
0 0 193-1 191-5 -2-891 -2120-0 733-0
-0-082 -15-7 190-8 191-5
-0-145 —27-8 192-0 192-3 calculated .5 * calculated
-0-164 -31-0 189-5 193-0 -1-50 -7120 475-0
-0-214 -41-5 192-0 194-5
—0-378 -80-4 212-5 204-0
-0-46 -101-5 219-0 209-0

VOL. CCXXIIl.— A. 22z
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Table XL—Observed and calculated speeds at which instability first appears when

Rj = BR2 — 4*035 cm.
Hxjv ailv
G2/ observed. calculated. P observed. observed,
1
0*765 303*0 396*0 470*0 -0*689 -66*2 96*2
0*7535 245%5 326*0 313%0 -0*793 -84%4 106*5
0*755 242*3 321*0 325*0 -0*800 -84*4 105*6
0*748 202*7 271*0 278*0 -0*843 -92*2 109*4
0*745 182*9 245*5 264*0 -1*00 -128*9 128*9
0*718 135*7 189*1 191*0 -1*00 -125*8 125*8
0*664 93*9 141%5 139%1 -1*129 -153%4 135%9
0*639 80*2 125*6 126*5 -1*244 -184*1 148*0
0*643 84*2 131*0 130*8 -1*302 -209*6 161*1
0*569 60*3 106*0 105*3 -1*489 -264*0 177*3
0*542 55*3 102*1 100*1 -1*63 -299*0 183*7
0*476 44*5 93*5 91*2 -1*795 -376*0 209*4
0*419 36*5 87*2 84*5 -1*925 -419*0 215*0
0*376 32*6 86*8 81*4 -2*00 -475*0 237*3
0*322 26*0 80*8 78*1 -2*17 -511*6 235*%9
0*276 21*5 77*8 75*9 -2*32 -579*5 249*8
0*213 16*1 75*6 73*5 -2*53 -709*0 280*2
0 0 70%7 69*8 -2*68 -820*0 306*0
-0*144 -10*24 71*1 70*1 -2*84 -903*5 318*0
-0*236 -17*2 72*9 71*4 -3*25 -1278*0 393*0
-0*349 -26*9 75*6 74*1
-0*479 -38*6 80*7 79*0* Calculated
-0*585 -52*6 89*9 84*8f ( —
-0*591 -53*5 90*5 84*0J -1*347 -232*3 172*8
-0*591 -53*8 91*0

* Part due to second term of (7.11) 14 per cent, of whole,

i %5 » 3 ) ii

f 55 - 55 35 i >j

In spite of this uncertainty there seems to be some evidence in the figures of column
4, Table I1X., to show that the mathematical approximation on which (6.03) is based is
getting appreciably inaccurate when d/R1is as large as J, for the numbers in column 3
are systematically greater than those in column 4 from <K= +0*5 to kK= —0*3.

In working out the calculated values of for negative values of p by the
formula 7*11, Part I., it is assumed that the formula ceases to be applicable when the
“ correction s term is more than 20 per cent, of the main term. In Table II. it will be
seen that when the correction is 33 per cent., the value of Q1/v is too low.

The calculated values of LL/v and £I2/v for ~ — —1*5 in the case where = 3*80,
and for fi = —1*347 in the case where = 3*55 are given at the end of Tables X.*
and X 1.|

* See Part I. (7.13).
t See Part I. (7.14).
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In order to give an idea of the uniformity of the experimental results and the accuracy
of the theoretical predictions, two diagrams, figs. 17 and 18, have been prepared. In
these diagrams, which may be called stability diagrams, the abscissae represent n 2/,2
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Fig. 17. Comparison between observed and calculated speeds at which instability first appears ;
case when Rx= 3-80 cm., R2= 4-035 cm.
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Fig. 18. Comparison between observed and calculated speeds at which instability first appears;
case when Rj = 3-55 cm., R2= 4-035 cm.

while the ordinates are QIfv. Every point in the diagram therefore represents a possible
state of motion of the cylinders. The speeds at which instability sets in as the speed
272
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of rotation is slowly increased are represented by points on a curve. Tlie observed
points are shown as dots while the calculated ones are shown as circles centred at the
points to which they refer. All points above the curve represent states of the apparatus
in which the flow is unstable while those below it represent stable states.

The accuracy with which the observed and calculated sets of points fall on the
same curve is quite remarkable. Attention is specially directed to the points corre-

sponding with y = 35, — = 475, — =V—712, W the case when Rj
and y— —1*347, — = 172*8, — = —232*3, in the case when Rx= 3*55. These
were calculated from (7.13) and (7.14), Part I. The accuracy with which these points

fall on the curves appears remarkable when it is remembered how complicated was the
analysis employed in obtaining them.

The curve, fig. 17, shows the relationship between Qj/y and Q2y when Rx= 3*80
for the whole range over which measurements were taken. In the curve, fig. 18, which
is the stability curve when Rx= 3*55, the extreme measurements have been left out
in order that the curve might be drawn on a scale large enough to give an idea of the
accuracy of the results.

A noticeable feature of the results is the way in which the curves, figs. 17 and 18,
approach asymptotically the lines QilQ2= R2Z/Ri2- These lines are marked as dotted
straight lines. The prediction of the late Lord Rayleigh that an inviscid fluid contained
between two concentric cylinders would be stable if H2 LL > Rp/R 2is therefore true,
and is applicable to viscous liquids.

The conclusion deduced from his theory that an inviscid liquid would Re unstable
if the cylinders rotated in opposite directions is not applicable to viscous fluids. In
fact it is a remarkable feature of the curves that if the outer cylinder is rotating in the
opposite direction to the inner one, the speed which it is necessary for the inner cylinder
to attain in order that instability may arise is greater than it would be if the outer
cylinder were at rest.

Spiral Form of Instability.

In many cases a spiral form of instability was observed. In cases when the space
between the cylinders was small compared with the radius, this form was very similar
to the symmetrical type, except that each vortex in its square-sectioned partition was
wrapped as a spiral round the inner cylinder. In this way a double-threaded screw or
spiral was formed, the two “ threads ” being vortices in the cross-sections of which the
fluid rotated in opposite directions. It was noticed, however, that one of the vortices
was usually wider than the other. The larger one was always the one for which the
component of vorticity in the direction of the axis was the same as that of the steady
motion. For instance, in the case when the outer cylinder was at rest the appearance
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of the spiral would be that shown in fig. 19. The direction of rotation in the cross-
sections of the spiral vortices in an axial plane is shown by means of curved arrows.
In the case where hwvas < —1 the two vortices become
fZ >

so different in size that one of them almost disappeared
altogether. The appearance of the coloured fluid was
then that of a vortex rolled in a single-thread spiral on
the inner cylinder. It was difficult to obtain photographs
of this type of instability because there was no point from
which the apparatus could be viewed so that the sheets of
coloured fluid could be seen edgewise. One fairly good
photograph was obtained ; it is shown in fig. 20, Plate 5.
It will be seen that the spiral form is a very definite form
of instability.

It was found that the formation of spiral instability
was always connected with a circulation in the axial planes
during the steady motion before the instability appeared.
In order therefore to avoid the formation of spiral
instability it was necessary to avoid such a circulation in
the part of the apparatus where the observations were
being made. Various methods were discovered for pro-
ducing this effect, but it seems hardly necessary to go into
such details here.

Since a very small component of velocity in the axial
plane duri*ng’stéady motion was found to produce s?i'r;lil
instability, the formation of the symmetrical type of

>

Fig. 19. Spiral form of in-
stability which appears when

steady motlon 1S not strictl>
limited to two dimensions

"béfore instability sets in.

instability is, in itself, a good test for knowing whether the steady motion which exists
in the apparatus before the instability sets in is a good approximation to the ideal two-
dimensional motion which would exist if the cylinders were infinitely long.

Subsequent Motion of the Fluid.

Though no attempt has been made to calculate the subsequent motion of the fluid
certain observations were made. In all cases where was greater than 3*0 cm., it
was found when hMwvas positive that if the speed of the apparatus was kept constan

very slightly higher than the speed at which the vortices

formed, the vortices were

permanent. They remained in perfectly steady motion so that the partitions marked
by the coloured fluid were fixed. The photograph shown in fig. 11, Plate 4, is one of a
steady motion which had been going for eight minutes when the photograph was taken.
I do not remember to have heard of any other case in which two different steady motions
are possible with the same boundary conditions. In this case evidently one of them,
the two-dimensional one, is unstable ; while the symmetrical three-dimensional one is

stable.
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A moderate increase in the speed of the apparatus merely increased the vigour of
the circulation in the vortices without altering appreciably their spacing or position,
but a large increase caused the symmetrical motion to break down into some kind of
turbulent motion, which it was impossible to follow by eye.

The calculations in Part | indicate that at the exact speed at which instability begins
the vortices form themselves infinitely slowly. In other words the calculated three-
dimensional motion is steady, to the first order of small quantities, and is, to the first
order, in neutral equilibrium. To determine whether it is really steady or whether it
is unstable one would have to go to the second order, a matter of extreme difficulty in
hydrodynamics. The experiments described above indicate that the effect of the second
order terms is to prevent the vortices from increasing indefinitely in activity. In some
such way one might explain the formation of the true steady motion, consisting of
alternate vortices, which is observed in the case when /uis positive.

Even when Ms negative the vortices formed when instability occurs appear
permanent, provided jus numerically less than a certain number which app
slightly with RY/R 2. In all the cases when Rx> 3*55 cm. it was found that the motion
in alternate vortices was stable provided —/t < 1, i.e., when the speed of the outer
cylinder was numerically less than that of the inner cylinder.

When the speed of the outer cylinder increased above this value, however, the sym-
metrical rings of coloured fluid which invariably appeared in the first instance if the
experiment was carefully performed, were found to break up shortly afterwards. In
order to find out if possible how the fluid moves during the breakdown of the first
symmetrical motion a careful examination was made into the nature of the flow when
[i was nearly equal to —1. W ith a value of /t very slightly greater than this it was found
that the breakdown occurred sufficiently slowly to enable the process to be observed
by eye. Unfortunately attempts to photograph it failed, but it was sufficiently definite
to be described.

Shortly after the symmetrical vortex system had formed itself, it was.seen that every
alternate vortex began to expand on one side and to contract on the opposite side of
the cylinder. On the other hand the intermediate vortices began to expand, to fill the
spaces from which the first set had contracted and to contract in the parts where the
first set had expanded. The effect is represented in sketch, fig. 21.

As seen in side elevation the effect was curious ; it looked as though each vortex was
pulsating so that its cross-section varied periodically, though with an oscillation of
increasing amplitude. After a time it became impossible to follow the motion, owing
partly, no doubt, to the fact that the system adopted for marking the liquid was not
really suitable for observing any but symmetrical motions.

When experiments were tried with slightly greater values of —//it was found that
the breakdown occurred in a very similar manner, but that in this case each vortex
seemed to expand in several points, equally spaced, round the cylinder. The appearance
of the colouring matter was then similar to that shown in the sketch, fig. 22. The
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general impression gained by observing the phenomenon was that each vortex grew
into the shape of a regular polygon, that these polygons were threaded on the inner

Fig. 21. Sketch illus- Fig. 22.  Appearance of

trating appearance of
vortices when they
begin to break lip;
case when = —1
approximately.

vortices when they
begin to break up
immediately after
their formation: case
when [x is less than

—1

cylinder and rotated in the same direction, and that the corners of each polygon were
placed over the sides of the one below.

Description oe Plates 4 and 5.

Fig. 9. Vortices when Rj = 2*93 cm., R2= 4*035 cm., [x positive.

Fig. 10. Vortices when Rx=23*25 cm., R2= 4*035 cm., A positive.

Fig. 11. Vortices when e 0.

Figs. 13 and 14. Vortices when Rx= 2*0 cm., R2= 4*035 cm., A= — 1*05 approximately.
Fig. 15. Vortices when Rj = 2*0 cm., R2= 4*035 cm., —2*0 approximately.

Fig. 16. Vortices when Rj = 2*0 cm., R2= 4*035 cm., [x — —2*3 approximately.

Fig. 20. Spiral form of instability.



