CHAPTER 8

ORDINARY DIFFERENTIAL EQUATIONS

ERHAPS the most common use of computers in physics is for the solution
P of differential equations. In this chapter we look at techniques for solving
ordinary differential equations, such as the equations of motion of rigid bodies
or the equations governing the behavior of electrical circuits. In the following
chapter we look at techniques for partial differential equations, such as the
wave equation and the diffusion equation.

8.1 FIRST-ORDER DIFFERENTIAL EQUATIONS WITH ONE VARIABLE

We begin our study of differential equations by looking at ordinary differen-
tial equations, meaning those for which there is only one independent variable,
such as time, and all dependent variables are functions solely of that one in-
dependent variable. The simplest type of ordinary differential equation is a
first-order equation with one dependent variable, such as

dx 2x

This equation, however, can be solved exactly by hand by separating the vari-
ables. There’s no need to use a computer in this case. But suppose instead that

you had
dr  2x 3x?

dt  t B
Now the equation is no longer separable and moreover it’s nonlinear, meaning
that powers or other nonlinear functions of the dependent variable x appear
in the equation. Nonlinear equations can rarely be solved analytically, but
they can be solved numerically. Computers don’t care whether a differential
equation is linear or nonlinear—the techniques used to solve it are the same
either way.

(8.2)

327



CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

The general form of a first-order one-variable ordinary differential equation

is d
-ﬁ: (x,1), (8.3)
where f(x, t) is some function we specify. In Eq. (8.2) we had f(x,t) = 2x/t +
3x?/#. The independent variable is denoted t in this example, because in
physics the independent variable is often time. But of course there are other

possibilities. We could just as well have written our equation as

Y = fxy). (5.4)
In this chapter we will stick with f for the independent variable, but it’s worth
bearing in mind that there are plenty of examples where the independent vari-
able is not time.

To calculate a full solution to Eq. (8.3) we also require an initial condition
or boundary condition—we have to specify the value of x at one particular
value of ¢, for instance at + = 0. In all the problems we’ll tackle in this chapter
we will assume that we're given both the equation and its initial or boundary
conditions.

8.1.1 EULER’S METHOD

Suppose we are given an equation of the form (8.3) and an initial condition
that fixes the value of x for some ¢. Then we can write the value of x a short
interval / later using a Taylor expansion thus:

,d%x

dx n
w vew

dt
=x(t) + hf(x,t) + O(h?), (8.5)

x(t+h)=x(t) +h=—+1h

where we have used Eq. (8.3) and O(/?) is a shorthand for terms that go as h?
or higher. If 1 is small then /? is very small, so we can neglect the terms in #?
and get

x(t+h) = x(t) + hf(x,t). (8.6)

If we know the value of x at time ¢ we can use this equation to calculate the
value a short time later. Then we can just repeat the exercise to calculate x an-
other interval / after that, and so forth, and thereby calculate x at a succession
of evenly spaced points for as long as we want. We don’t get x(¢) for all values
of ¢ from this calculation, only at a finite set of points, but if / is small enough

528




8.1 | FIRST-ORDER DIFFERENTIAL EQUATIONS WITH ONE VARIABLE

we can get a pretty good picture of what the solution to the equation looks
like. As we saw in Section 3.1, we can make a convincing plot of a curve by
approximating it with a set of closely spaced points.

Thus, for instance, we might be given a differential equation for x and an
initial condition at t = a and asked to make a graph of x(t) for values of f from
a to b. To do this, we would divide the interval from a to b into steps of size h
and use (8.6) repeatedly to calculate x(t), then plot the results. This method for
solving differential equations is called Euler’s method, after its inventor, Leon-
hard Euler.

EXAMPLE 8.1: EULER’S METHOD
Let us use Euler’s method to solve the differential equation

d
d—f = ¥ +sint 8.7)
with the initial condition x = Oatt = 0. Hereis a program to do the calculation
from ¢ = 0 to t = 10 in 1000 steps and plot the result:

from math import sin Fﬂe:euler.py
from numpy import arange
from pylab import plot,xlabel,ylabel, show

def f(x,t):
return -x**3 + sin(t)

’

a=20.0 # Start of the interval
b =10.0 # End of the interval

N = 1000 # Number of steps

h = (b-a)/N # Size of a single step
x =0.0 # Initial condition

tpoints = arange(a,b,h)
xpoints 1
for t in tpoints:
xpoints.append (x)
x += h#*f(x,t)

]

plot(tpoints,xpoints)
xlabel("t")
ylabel("x(t)")

show ()

329



CHAPTER 8

30

ORDINARY DIFFERENTIAL EQUATIONS

1.0
\\
0.5} N
\‘.
= 3
= 0.0 \
1
Y
L
\ /
\ /
\ /
-0.5} 3 /
3 /
h\
‘\ //
NS
.
~1.05 2 4 6 8 10

Figure 8.1: Numerical solution of an ordinary differential equation. A solution to
Eq. (8.7) from x = 0 to x = 10, calculated using Euler’s method.

If we run this program it produces the picture shown in Fig. 8.1, which, as
we'll see, turns out to be a pretty good approximation to the shape of the true
solution to the equation. In this case, Euler’s method does a good job.

In general, Euler’s method is not bad. It gives reasonable answers in many
cases. In practice, however, we never actually use Euler’s method. Why not?
Because there is a better method that’s very little extra work to program, much
more accurate, and runs just as fast and often faster. This is the so-called
Runge-Kutta method, which we’ll look at in a moment. First, however, let’s
look a little more closely at Euler’s method, to understand why it’s not ideal.!

Euler’s method only gives approximate solutions. The approximation arises
because we neglected the h? term (and all higher-order terms) in Eq. (8.5). The

'It's not completely correct to say that we never use Euler’s method. We never use it for
solving ordinary differential equations, but in Section 9.3 we will see that Euler’s method is useful
for solving partial differential equations. It's true in that case also that Euler’s method is not
very accurate, but there are other bigger sources of inaccuracy when solving partial differential
equations which mean that the inaccuracy of Euler’s method is moot, and in such situations its
simplicity makes it the method of choice.




8.1 | FIRST-ORDER DIFFERENTIAL EQUATIONS WITH ONE VARIABLE

size of the h? term is 342 d%x/dt2, which tells us the error introduced on a sin-
gle step of the method, to leading order, and this error gets smaller as I gets
smaller so we can make the step more accurate by making # small.

But we don’t just take a single step when we use Euler’s method. We take
many. If we want to calculate a solution from t = a to t = b using steps of
size h, then the total number of steps we need is N = (b~ a)/h. Let us denote
the values of ¢ at which the steps fall by ¢, = a + ki and the corresponding val-
ues of x (which we calculate as we go along) by x;. Then the total, cumulative
error incurred as we solve our differential equation all the way from a to b is
given by the sum of the individual errors on each step thus:

N-1 d2x N-1 df b df
1p2{ — = =1 ha'll ~1 bt

L 3h (dt2>x - Zh)_:h(dt)mk—zh/,, ar 4

k=0 t=t k=0 t=t;

= Ih[f(x(6).b) - f(x(a),a)], ®9)

where we have approximated the sum by an integral, which is a good approx-
imation if h is small.

Notice that the final expression for the total error is linear in h, even though
the individual errors are of order h?, meaning that the total error goes down
by a factor of two when we make h half as large. In principle this allows us to
make the error as small as we like, although when we make & smaller we also
increase the number of steps N = (b — a) /h and hence the calculation will take
proportionately longer—a calculation that’s twice as accurate will take twice
as long.

Perhaps this doesn’t sound too bad. If that's the wdy it had to be, we could
live with it. But it doesn’t have to be that way. The Runge-Kutta method does
much better.

8.1.2 THE RUNGE-KUTTA METHOD

You might think that the way to improve on Euler’s method would be to use
the Taylor expansion of Eq. (8.5) again, but keep terms to higher order. For
instance, in addition to the order & term we could keep the order K term,
which is equal to ,
dx | ,df

T 2h I 8.9
This would give us a more accurate expression for x(t + k), and in some cases
this approach might work, but in a lot of cases it would not. It requires us to
know the derivative df/d¢, which we can calculate only if we have an explicit

11,2
oh

331



CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

Slope at ¢ e

" N
/

Slope at
t+h/2

¢ t+h

Figure 8.2: Euler’s method and the second-order Runge-Kutta method. Euler’s
method is equivalent to taking the slope dx/dt at time ¢ and extrapolating it into the
future to time ¢ + 1. A better approximation is to perform the extrapolation using the
slope at time ¢ + 1h.

expression for f. Often we have no such expression because, for instance, the
function f is calculated as the output of another computer program or function
and therefore doesn’t have a mathematical formula. And even if f is known
explicitly, a method that requires us to calculate its derivative is less conve-
nient than the Runge-Kutta method, which gives higher accuracy and doesn’t
require any derivatives.

The Runge-Kutta method is really a set of methods—there are many of
them of different orders, which give results of varying degrees of accuracy. In
fact technically Euler’s method is a Runge-Kutta method. It is the first-order
Runge-Kutta method. Let us look at the next method in the series, the second-
order method, also sometimes called the midpoint method, for reasons that will
shortly become clear.

Euler’s method can be represented in graphical fashion as shown in Fig. 8.2.
The curve represents the true form of x(t), which we are trying to calculate.
The differential equation dx/dt = f(x,t) tells us that the slope of the solution
is equal to the function f(x,t), so that, given the value of x at time t we can
calculate the slope at that point, as shown in the figure. Then we extrapolate
that slope to time f + /i and it gives us an estimate of the value of x(t + h),
which is labeled “Euler’s method” in the figure. If the curve of x(t) were in
fact a straight line between ¢ and ¢ + i, then this method would give a perfect
estimate of x(¢ + /). But if it’s curved, as in the picture, then the estimate is only

332




8.1 | FIRST-ORDER DIFFERENTIAL EQUATIONS WITH ONE VARIABLE

approximate, and the error introduced is the difference between the estimate
and the true value of x(¢ + h).

Now suppose we do the same calculation but instead use the slope at the
midpoint { + 1/ to do our extrapolation, as shown in the figure. If we extrap-
olate using this slope we get a different estimate of x(f + ) which is usually
significantly better than Euler’s method. This is the basis for the second-order
Runge-Kutta method.

In mathematical terms the method involves performing a Taylor expansion
around ¢ + 3h to get the value of x(¢ + h) thus:

1 1, ((dx 12 (42X 3
x(t+h)=x(t+ 3h) + i — + 5| 57 + O(°). (8.10)
dt t+1ih dt t+1h

Similarly we can derive an expression for x(t):

2
x(t) = x(t+ 3h) — 1h <E> + 3h? (d—:> + O(13). (8.11)
dt t+1h dt t+1h
Subtracting the second expression from the first and rearranging then gives
x(t+h)=x(t)+h (E) + O(1?)
dt t+4h
= x(t) +hf (x(t + 3h),t + 1h) + O(K®). (8.12)

Notice that the term in /? has completely disappeared. The error term is now
O(h?), so our approximation is a whole factor of & more accurate than before.
If 1 is small this could make a big difference to the acctiracy of the calculation.
Though it looks promising, there is a problem with this approach: Eq. (8.12)
requires a knowledge of x(t + 1h), which we don’t have. We only know the
value at x(t). We get around this by approximating x(t + k) using Euler’s
method x(t + $h) = x(t) + Ihf(x,t) and then substituting into the equation
above. The complete calculation for a single step can be written like this:

ki =hf(x,t), (8.13a)
ko = hf (x+ Ly, £+ 1h), (8.13b)
x(t+h) = x(t) + ky. (8.13¢)

Notice how the first equation gives us a value for k; which, when inserted into
the second equation, gives us our estimate of x(f + 3h). Then the resulting
value of k, inserted into the third equation, gives us the final Runge-Kutta
estimate for x(t + h).

333



CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

These are the equations for the second-order Runge-Kutta method. As with
the methods for performing integrals that we studied a Chapter 5, a “second-
order” method, in this context, is a method accurate to order h?, meaning that
the error is of order 1. Euler’s method, by contrast, is a first-order method
with an error of order 2. Note that these designations refer to just a single
step of each method. As discussed in Section 8.1.1, real calculations involve
doing many steps one after another, with errors that accumulate, so that the
accuracy of the final calculation is poorer (typically one order in k poorer) than
the individual steps.

The second-order Runge-Kutta method is only a little more complicated to
program than Euler’s method, but gives much more accurate results for any
given value of h. Or, alternatively, we could make / bigger—and so take fewer
steps—while still getting the same level of accuracy as Euler’s method, thus
creating a program that achieves the same result as Euler’s method but runs
faster.

We are not entirely done with our derivation yet, however. Since we don't
have an exact value of x(t + }/) and had to approximate it using Euler’s
method, there is an extra source of error in Eq. (8.12), coming from this second
approximation, in addition to the O(k3) error we have already acknowledged.
How do we know that this second error isn’t larger than O(h?) and doesn’t
make the accuracy of our calculation worse?

We can show that in fact this is not a problem by expanding the quantity
f(x+ 3ki,t + 3h) in Eq. (8.13b) in its first argument only, around x(t + 1h):

fx(#) + ko, t+ 3h) = f(x(t + Lh), ¢ + h)

+ [x(t) + 3k1 — x(t + Lh)] (a—f

L) +O([x(t) + by — x(t + I)).
x(t+h/2),t+h/2

(8.14)
But from Eq. (8.5) we have
x(t+3h) = x(t) + 3hf(x,t) + O(h?) = x(t) + 1k + O(K?), (8.15)
s0 x(t) + 3ky — x(t + 3h) = O(h?) and
fx(t) + gkt + 3h) = f(x(t+ $h), t + 1h) + O(H?). (8.16)

This means that Eq. (8.13b) gives k, = hf (x(t+ 3h), t + 3h) + O(h®), and hence
there’s no problem—our Euler’s method approximation for x(t + 1h) does in-
troduce an additional error into the calculation, but the error goes like K3 and
hence our second-order Runge-Kutta method is still accurate to O(k?) overall.

334




8.1 | FIRST-ORDER DIFFERENTIAL EQUATIONS WITH ONE VARIABLE

EXAMPLE 8.2: THE SECOND-ORDER RUNGE-KUTTA METHOD

Let us use the second-order Runge-Kutta method to solve the same differential
equation as we solved in Example 8.1. The program is a minor modification of
our program for Euler’s method:

from math import sin
from numpy import arange
from pylab import plot,xlabel,ylabel,show

def f(x,t):
return -x**3 + sin(t)

a=20.0

b =10.0

N =10

h = (b-a)/N

tpoints = arange(a,b,h)
xpoints = []

x=0.0
for t in tpoints:
xpoints.append(x)

k1 = h*f(x,t)
k2 = h*f(x+0.5%k1,t+0.5%h)
x += k2

plot (tpoints,xpoints)
xlabel("t")

ylabel ("x(t)")

show()

If we run this program repeatedly with different values for the number of
points N, starting with 10, then 20, then 50, then 100, and plot the results,
we get the plot shown in Fig. 8.3. The figure reveals that the solution with 10
points is quite poor, as is the solution with 20. But the solutions for 50 and 100
points look very similar, indicating that the method has converged to a result
close to the true solution, and indeed a comparison with Fig. 8.1 shows good
agreement with our Euler’s method solution, which used 1000 points.

File: rk2.py

335



CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

x(t)

Figure 8.3: Solutions calculated with the second-order Runge-Kutta method. Solu-
tions to Eq. (8.7) calculated using the second-order Runge-Kutta method with N = 10,
20, 50, and 100 steps.

8.1.3 THE FOURTH-ORDER RUNGE-KUTTA METHOD

We can take this approach further. By performing Taylor expansions around
various points and then taking the right linear combinations of them, we can
arrange for terms in /3, *, and so on to cancel out of our expressions, and so
get more and more accurate rules for solving differential equations. The down-
side is that the equations become more complicated as we go to higher order.
Many people feel, however, that the sweet spot is the fourth-order rule, which
offers a good balance of high accuracy and equations that are still relatively
simple to program. The equations look like this:

ki=hf(x,t), (8.17a)
ko = hf(x+ 3ki,t + 1h), (8.17b)
ks = hf(x+ kot + 1h), (8.17c)
ks = hf(x + ks, t+h), (8.17d)
x(t+h) = x(t) + (ks + 2ko + 2k + ky). (8.17e)

336




8.1 l FIRST-ORDER DIFFERENTIAL EQUATIONS WITH ONE VARIABLE

This is the fourth-order Runge~Kutta method, and it is by far the most common
method for the numerical solution of ordinary differential equations. It is ac-
curate to terms of order /* and carries an error of order /5. Although its deriva-
tion is quite complicated (we’ll not go over the algebra—it’s very tedious), the
final equations are relatively simple. There are just five of them, and yet the
result is a method that is three orders of /i more accurate than Euler’s method
for steps of the same size. In practice this can make the fourth-order method as
much as a million times more accurate than Euler’s method. Indeed the fourth-
order method is significantly better even than the second-order method of Sec-
tion 8.1.2. Altematively, we can use the fourth-order Runge-Kutta method
with much larger & and many fewer steps and still get accuracy just as good
as Euler’s method, giving a method that runs far faster yet gives comparable
results.

For many professional physicists, the fourth-order Runge-Kutta method is
the first method they turn to when they want to solve an ordinary differential
equation on the computer. It is simple to program and gives excellent results.
It is the workhorse of differential equation solvers and one of the best known
computer algorithms of any kind anywhere.

EXAMPLE 8.3: THE FOURTH-ORDER RUNGE-KUTTA METHOD

Let us once more solve the differential equation from Eq. (8.7), this time using
the fourth-order Runge-Kutta method. The program is again only a minor

modification of our previous ones: ,

from math import sin File: rk4.py
from numpy import arange
from pylab import plot,xlabel,ylabel,show

def f(x,t):
return -x**3 + sin(t)

a=20.0

b = 10.0

N =10

h = (b-a)/N

tpoints = arange(a,b,h)
xpoints = []

x =0.0

337



‘'HAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

x(t)

Figure 8.4: Solutions calculated with the fourth-order Runge-Kutta method. Solu-
tions to Eq. (8.7) calculated using the fourth-order Runge-Kutta method with N = 10,
20, 50, and 100 steps.

for t in tpoints:
xpoints.append(x)
k1 = h*f(x,t)
k2 = h*f(x+0.5%k1,t+0.5%h)

k3 = h*f (x+0.5%k2,t+0.5%h)
k4 = h*f (x+k3,t+h)
x += (k1+2xk2+2*k3+k4)/6

plot(tpoints,xpoints)
xlabel("t")
ylabel("x(t)")

show()

Again we run the program repeatedly with N = 10, 20, 50, and 100. Figure 8.4 f
shows the results. Now we see that, remarkably, even the solution with 20
points is close to the final converged solution for the equation. With only 20
points we get quite a jagged curve—20 points is not enough to make the curve
appear smooth in the plot—but the points nonetheless lie close to the final
solution of the equation. With only 20 points the fourth-order method has




8.1 | FIRST-ORDER DIFFERENTIAL EQUATIONS WITH ONE VARIABLE

calculated a solution almost as accurate as Euler’s method with a thousand
points.

One minor downside of the fourth-order Runge-Kutta method, and indeed
of all Runge-Kutta methods, is that if you get the equations wrong, it may not
be obvious in the solution they produce. If, for example, you miss one of the
factors of 1 or 2, or have a minus sign when you should have a plus, then the
method will probably still produce a solution that looks approximately right.
The solution will be much less accurate than the correct fourth-order method—
if you don’t use the equations exactly as in Eq. (8.17) you will probably only
get a solution about as accurate as Euler’s method, which, as we have seen,
is much worse. This means that you must be careful when writing programs
that use the Runge-Kutta method. Check your code in detail to make sure all
the equations are exactly correct. If you make a mistake you may never realize
it because your program will appear to give reasonable answers, but in fact
there will be large errors. This contrasts with most other types of calculation in
computational physics, where if you make even a small error in the program
it is likely to produce ridiculous results that are so obviously wrong that the
error is relatively easy to spot.

Exercise 8.1: A low-pass filter

Here is a simple electronic circuit with one resistor and one capacitor:

R I

Vin — AW\ Vout

td

0

This circuit acts as a low-pass filter: you send a signal in on the left and it comes out
iltered on the right.

Using Ohm’s law and the capacitor law and assuming that the output load has very
igh impedance, so that a negligible amount of current flows through it, we can write
lown the equations governing this circuit as follows. Let I be the current that flows
hrough R and into the capacitor, and let Q be the charge on the capacitor. Then:

d
IR:Vin_Voutz Q= CVou, I=d_?-

339



CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

Substituting the second equation into the third, then substituting the result into the first
equation, we find that Vi, — Vo4 = RC (dV,,/dt), or equivalently

dVout _ _1_(
dt ~ RC

Vin - Vout)-

a) Write a program (or modify a previous one) to solve this equation for V()
using the fourth-order Runge-Kutta method when the input signal is a square-
wave with frequency 1 and amplitude 1:

{l if [2¢] is even, (8.18)

-1 if [2t] is odd,

where | x| means x rounded down to the next lowest integer. Use the program to
make plots of the output of the filter circuit from ¢t = 0 to t = 10 when RC = 0.01,
0.1, and 1, with initial condition Vo, (0) = 0. You will have to make a decision ‘
about what value of /1 to use in your calculation. Small values give more accurate
results, but the program will take longer to run. Try a variety of different values
and choose one for your final calculations that seems sensible to you. '

b) Based on the graphs produced by your program, describe what you see and ex-
plain what the circuit is doing.

A program similar to the one you wrote is running inside most stereos and music
players, to create the effect of the “bass” control. In the old days, the bass control on
a stereo would have been connected to a real electronic low-pass filter in the amplifier
circuitry, but these days there is just a computer processor that simulates the behavior
of the filter in a manner similar to your program.

8.1.4 SOLUTIONS OVER INFINITE RANGES

We have seen how to find the solution of a differential equation starting from
a given initial condition and going a finite distance in ¢, but in some cases we
want to find the solution all the way out to t = . In that case we cannot
use the method above directly, since we’d need an infinite number of steps to
reach t = oo, but we can play a trick similar to the one we played when we
were doing integrals in Section 5.8, and change variables. We define

t u

=177 or equivalently b —— (8.19)

u
1—u’

so that as  — oo we have © — 1. Then, using the chain rule, we can rewrite
our differential equation dx/dt = f(x,t) as

dx du
T =fn, (8.20)

340




8.1 | FIRST-ORDER DIFFERENTIAL EQUATIONS WITH ONE VARIABLE

or 4 4
X t u
o= af(x, — u). (8.21)
But dt .
&= (8.22)
) 4
X u
i (1—u) f(x, T—a u>' (8.23)
If we define a new function g(x, 1) by
glx,u) = (1— u)‘zf<x, I l_l u) (8.24)
then we have
dr _ (x,u) (8.25)
du 8\t ’

which is a normal first-order differential equation again, as before. Solving this
equation for values of 1 up to 1 is equivalent to solving the original equation
for values of ¢ up to infinity. The solution will give us x(11) and we then map u
back onto # using Eq. (8.19) to get x(¢).

EXAMPLE 8.4: SOLUTION OVER AN INFINITE RANGE

Suppose we want to solve the equation

1
dt ~ x2+ 2

fromt = Otot = oo withx = 1at+ = 0. What would be the equivalent
differential equation in x and u that we would solve?
Applying Eq. (8.24), we have

1 1
-2
X, = — = . 82
gx ) = (1-u) +ut/(1-u)?2  x2(1—u)? + 2 8.26)
So we would solve the equation
dx 1
= - 27
du 21— u)2+u? (8.27)
from u = 0to u = 1, with an initial condition x = 1 at u = 0. We can

calculate the solution with only a small modification of the program we used
in Example 8.3:

341



CHAPTER 8

File: odeinf . py

342

ORDINARY DIFFERENTIAL EQUATIONS

from numpy import arange
from pylab import plot,xlabel,ylabel,xlim,show

def g(x,u):
return 1/ (x**2%(1-u)**2+u**2)

= 0.0
=1.0
= 100
(b-a)/N

b=2owe

]

upoints = arange(a,b,h)

tpoints = []
xpoints = []
x=1.0

for u in upoints:
tpoints.append(u/(1-u))
xpoints.append(x)
k1 = h*g(x,u)

k2 = h*g(x+0.5%k1,u+0.5%h)
k3 = hxg(x+0.5+k2,u+0.5%h)
k4 = h*g(x+k3,u+h)

x += (k1+2+k2+2%k3+k4)/6

plot(tpoints,xpoints)
x1im(0,80)
xlabel("t")

ylabel ("x(t)")

show ()

Note how we made a list tpoints of the value of ¢ at each step of the Runge-
Kutta method, as we went along. Although we don’t need these values for the
solution itself, we use them at the end to make a plot of the final solution in
terms of ¢ rather than u. The resulting plot is shown in Fig. 8.5. (It only goes
up to ¢ = 80. Obviously it cannot go all the way out to infinity—one cannot
draw an infinitely wide plot—but the solution itself does go out to infinity.)
As with the integrals of Section 5.8, there are other changes of variables
that can be used in calculations like this, including transformations based on
trigonometric functions, hyperbolic functions, and others. The transformation
of Eq. (8.19) is often a good first guess—it works well in many cases—but other




8.2 | DIFFERENTIAL EQUATIONS WITH MORE THAN ONE VARIABLE

2.2

2.0
Lo}

1.6

x(t)

1.4

1.2

1.0

Figure 8.5: Solution of a differential equation to ¢ = co. The solution of the differential
equation in Eq. (8.4), calculated by solving all the way out to t = o0 as described in the
text, although only the part of the solution up to t = 80 is shown here.

choices can be appropriate too. A shrewd choice of variables can make the
algebra easier, simplify the form of the function g(x, u), or give the solution
more accuracy in a region of particular interest.

8.2 DIFFERENTIAL EQUATIONS WITH MORE THAN ONE VARIABLE

So far we have considered ordinary differential equations with only one de-
pendent variable x, but in many physics problems we have more than one
variable. That is, we have simultaneous differential equations, where the deriva-
tive of each variable can depend on any or all of the variables, as well as the
independent variable ¢. For example:

dx _ dy _ . 2

T =Y xy + sin” wt. (8.28)
Note that there is still only one independent variable t. These are still ordinary
differential equations, not partial differential equations.

343



CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

A general form for two first-order simultaneous differential equations is?

dv dy _
aF - fe(xy.t), ar fu(xyt), (8.29)

where f, and fy are general, possibly nonlinear, functions of x, y, and ¢. For
an arbitrary number of variables the equations can be written using vector

notation as
dr

dt
wherer = (x,y,...) and fis a vector of functions f(r, t) = (f,(r, ), fy(r.t),...).
Although simultaneous differential equations are often a lot harder to solve
analytically than single equations, when solving computationally they are ac-
tually not much more difficult than the one-variable case. For instance, we can
Taylor expand the vector r thus:

£(r, t), (8.30)

-

r(t+h) =rx(t)+ hg +O(I?) = £(t) + hf(r, £) + O(h?). (8.31)

Dropping the terms of order h? and higher we get Euler’s method for the multi-
variable case:
r(t+h) = r(t) + h(r, t). (8.32)

The Taylor expansions used to derive the Runge-Kutta rules also general-
ize straightforwardly to the multi-variable case, and in particular the multi-
variable version of the fourth-order Runge—Kutta method is an obvious vector
generalization of the one-variable version:

ki = hf(r, t), (8.33a)
ko = hf(r + ky, t+ 1h), (8.33b)
ky = hf(r + ko, t + 1h), (8.33c)
ks = hf(r + k3, t + 1), (8.33d)
r(t+h) = r(t) + } (k1 +2k; + 2k3 + k). (8.33¢)

These equations can be conveniently translated into Python using arrays to
represent the vectors. Since Python allows us to do arithmetic with vectors di-

?Although it covers most cases of interest, this is not the most general possible form. In prin-
ciple, dx/dt could also depend on dy/dt, possibly in nonlinear fashion. We'll assume that the
equations have already been separated in the derivatives to remove such dependencies. It's worth
noting, however, that such separation is not always possible—for instance, when the equations
involve transcendental functions. In such cases, other methods, such as the relaxation methods
discussed in Section 8.6.2, may be needed to find a solution.

344




8.2 J DIFFERENTIAL EQUATIONS WITH MORE THAN ONE VARIABLE

rectly, and allows vectors to be both the arguments and the results of functions,
the code is only slightly more complicated than for the one-variable case.

EXAMPLE 8.5: SIMULTANEOUS ORDINARY DIFFERENTIAL EQUATIONS

Let us calculate a solution to the equations given in Eq. (8.28) from ¢t = 0 to
t = 10, for the case w = 1 with initial condition x = y = 1 att = 0. Here is a
suitable program, again based on a slight modification of our earlier programs.

from math import sin File: odesim.py
from numpy import array,arange
from pylab import plot,xlabel,show

def f(r,t):
x = r[0]
y = r[i]

fx = x*y - x
fy = y - x*y + sin(t)**2
return array([fx,fy],float)

a=20.0
b = 10.0
N = 1000
h = (b-a)/N

tpoints = arange(a,b,h)
xpoints = []
ypoints = []

I

r = array([1.0,1.0],float)

for t in tpoints:
xpoints.append(r[0])
ypoints.append(r[1])

k1 = h*f(r,t)

k2 = h*f (r+0.5*k1,t+0.5%h)
k3 = h*f (r+0.5%k2,t+0.5%h)
k4 = hxf(r+k3,t+h)

r += (k1+2xk2+2+k3+k4)/6
plot (tpoints,xpoints)
plot(tpoints,ypoints)
xlabel("t")
show ()

345



CHAPTER 8 i ORDINARY DIFFERENTIAL EQUATIONS

Note in particular the definition of the function f(r,t), which takes a vector
argument r, breaks it apart into its components x and y, forms the values of
fx and f, from them, then puts those values together into an array and returns
that array as the final output of the function. In fact, the construction of this
function is really the only complicated part of the program; in other respects
the program is almost identical to the program we used for the one-variable
case in Example 8.3. The lines representing the Runge-Kutta method itself
are unchanged except for the replacement of the scalar variable x by the new
vector variable r.

This program will form the basis for the solution of many other problems
in this chapter.

Exercise 8.2: The Lotka—Volterra equations

The Lotka-Volterra equations are a mathematical model of predator-prey interactions
between biological species. Let two variables x and y be proportional to the size of the
populations of two species, traditionally called “rabbits” (the prey) and “foxes” (the
predators). You could think of x and y as being the population in thousands, say, so
that x = 2 means there are 2000 rabbits. Strictly the only allowed values of x and y
would then be multiples of 0.001, since you can only have whole numbers of rabbits
or foxes. But 0.001 is a pretty close spacing of values, so it's a decent approximation to
treat x and y as continuous real numbers so long as neither gets very close to zero.

In the Lotka—-Volterra model the rabbits reproduce at a rate proportional to their
population, but are eaten by the foxes at a rate proportional to both their own popula-
tion and the population of foxes:

dx
qIF o Bxy,

where « and 8 are constants. At the same time the foxes reproduce at a rate proportional
to the rate at which they eat rabbits—because they need food to grow and reproduce—
but also die of old age at a rate proportional to their own population:

dy _
3 = VY=Y,

where 7 and J are also constants.

a) Write a program to solve these equations using the fourth-order Runge-Kutta
method for the casea = 1, 8 = v = 0.5, and § = 2, starting from the initial
condition x = y = 2. Have the program make a graph showing both x and
Y as a function of time on the same axes from ¢ = 0 to f = 30. (Hint: Notice
that the differential equations in this case do not depend explicitly on time t—in

346




8.3 SECOND-ORDER DIFFERENTIAL EQUATIONS

vector notation, the right-hand side of each equation is a function f(r) with no ¢
dependence. You may nonetheless find it convenient to define a Python function
(r,t) including the time variable, so that your program takes the same form as
programs given earlier in this chapter. You don't have to do it that way, but it
can avoid some confusion. Several of the following exercises have a similar lack
of explicit time-dependence.)

b) Describe in words what is going on in the system, in terms of rabbits and foxes.

Exercise 8.3: The Lorenz equations

One of the most celebrated sets of differential equations in physics is the Lorenz equa-
tions:

dx dy dz

E:U(y—x), T =y a:xy—bz,
where 7, 1, and b are constants. (The names o, r, and b are odd, but traditional—they
are always used in these equations for historical reasons.)

These equations were first studied by Edward Lorenz in 1963, who derived them
from a simplified model of weather patterns. The reason for their fame is that they were
one of the first incontrovertible examples of deterministic chaos, the occurrence of appar-
ently random motion even though there is no randomness built into the equations. We

encountered a different example of chaos in the logistic map of Exercise 3.6.

a) Write a program to solve the Lorenz equations for the case ¢ = 10, r = 28,
and b = § in the range from t = 0 to ¢ = 50 with initial conditions (x,y,2z) =
(0,1,0). Have your program make a plot of y as a function of time. Note the
unpredictable nature of the motion. (Hint: If you base your program on previous
ones, be careful. This problem has parameters r and b with the same names as
variables in previous programs—make sure to give your variables new names,
or use different names for the parameters, to avoid introducing errors into your
code.)

b) Modify your program to produce a plot of z against x. You should see a picture
of the famous “strange attractor” of the Lorenz equations, a lop-sided butterfly-
shaped plot that never repeats itself.

8.3 SECOND-ORDER DIFFERENTIAL EQUATIONS

So far we have looked at first-order differential equations, but first-order equa-
tions are in fact quite rare in physics. Many, perhaps most, of the equations en-
countered in physics are second-order or higher. Luckily, now that we know
how to solve first-order equations, solving second-order ones is pretty easy,
because of the following trick.

347



CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

Consider first the simple case where there is only one dependent variable x.
The general form for a second-order differential equation with one dependent
variable is

d?x dx
S f(x, a,t). (8.34)

That is, the second derivative can be any arbitrary function, including possibly
a nonlinear function, of x, ¢, and the derivative dx/dt. So we could have, for

instance, X
d’x 1 /dx dx 5 _,
W—;(a) +2a-—xe . (8.35)
Now here’s the trick. We define a new quantity y by
dx
TR (8.36)

in terms of which Eq. (8.34) can be written

dy _
5 =y, (8.37)

Between them, Egs. (8.36) and (8.37) are equivalent to the one second-order
equation we started with, as we can prove by substituting (8.36) into (8.37) to
recover (8.34) again. But (8.36) and (8.37) are both first order. So this process
reduces our second-order equation to two simultaneous first-order equations.
And we already know how to solve simultaneous first-order equations, so we
can now use the techniques we have learned to solve our second-order equa-
tion as well.

We can do a similar trick for higher-order equations. For instance, the gen-
eral form of a third-order equation is

d3x dx d’x
Froi f(X, at’ Eﬁ',f). {8.38)
We define two additional variables y and z by
dx dy
T=v F=2 (8.39)
so that Eq. (8.38) becomes
dz
5 = [zt (8.40)

Between them Egs. (8.39) and (8.40) give us three first-order equations that are
equivalent to our one third-order equation, so again we can solve using the
methods we already know about for simultaneous first-order equations.

348




8.3 | SECOND-ORDER DIFFERENTIAL EQUATIONS

This approach can be generalized to equations of any order, although equa-
tions of order higher than three are rare in physics, so you probably won't need
to solve them often.

The method can also be generalized in a straightforward manner to equa-
tions with more than one dependent variable—the variables become vectors
but the basic equations are the same as above. Thus a set of simultaneous
second-order equations can be written in vector form as

d’r dr
d—tz‘ - f(l‘, a, t)/ (841)
which is equivalent to the first-order equations
dr ds
= Fri f(r,s, t). (8.42)

If we started off with two simultaneous second-order equations, for instance,
then we would end up with four simultaneous first-order equations after ap-
plying the transformation above. More generally, an initial system of n equa-
tions of mth order becomes a system of m x n simultaneous first-order equa-
tions, which we can solve by the standard methods.

EXAMPLE 8.6: THE NONLINEAR PENDULUM

A standard problem in physics is the linear pendulum, where you approximate
the behavior of a pendulum by a linear differential equation than can be solved
exactly. But a real pendulum is nonlinear. Consider a pendulum with an arm
of length ¢ holding a bob of mass m:

Pivot

In terms of the angle 6 of displacement of the arm from the vertical, the acceler-
ation of the mass is £d26/d#? in the tangential direction. Meanwhile the force
on the mass is vertically downward with magnitude mg, where ¢ = 9.81ms~2
is the acceleration due to gravity and, for the sake of simplicity, we are ignoring
friction and assuming the arm to be massless. The component of this force in

349



CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

the tangential direction is mg sin 6, always toward the rest point at § = 0, and
hence Newton’s second law gives us an equation of motion for the pendulum

of the form
mé d_29 = —mgsin§ (8.43)
T '
or equivalently
d2¢ g .

Because it is nonlinear it is not easy to solve this equation analytically, and
no exact solution is known. But a solution on the computer is straightforward.
We first use the trick described in the previous section to turn the second-order
equation, Eq. (8.44), into two first-order equations. We define a new variable w

by
de
F i (8.45)
Then Eq. (8.44) becomes
dw g .
T = s 6. (8.46)

Between them, these two first-order equations are equivalent to the one second-
order equation we started with. Now we combine the two variables 6 and w
into a single vector r = (6, w) and apply the fourth-order Runge-Kutta method
in vector form to solve the two equations simultaneously. We are only really
interested in the solution for one of the variables, the variable 6. The method
gives us the solution for both, but we can simply ignore the value of w if we
don’t need it. The program will be similar to that of Example 8.5, except that
the function f (r,t) must be redefined appropriately. If the arm of the pendu-
lum were 10 cm long, for example, we would have

g =9.81
1=20.1
def f(r,t):

theta = r{0]

omega = r[1]

ftheta = omega

fomega = -(g/1)*sin(theta)

return array([ftheta,fomegal,float)

The rest of the program is left to you—see Exercise 8.4.

350




8.3 SECOND-ORDER DIFFERENTIAL EQUATIONS

Exercise 8.4: Building on the results from Example 8.6 above, calculate the motion of a
nonlinear pendulum as follows.

a) Write a program to solve the two first-order equations, Egs. (8.45) and (8.46),
using the fourth-order Runge-Kutta method for a pendulum with a 10cm arm.
Use your program to calculate the angle 6 of displacement for several periods of
the pendulum when it is released from a standstill at § = 179° from the vertical.
Make a graph of § as a function of time.

b) Extend your program to create an animation of the motion of the pendulum.
Your animation should, at a minimum, include a representation of the moving
pendulum bob and the pendulum arm. (Hint: You will probably find the func-
tion rate discussed in Section 3.5 useful for making your animation run at a
sensible speed. Also, you may want to make the step size for your Runge-Kutta
calculation smaller than the frame-rate of your animation, i.e., do several Runge-
Kutta steps per frame on screen. This is certainly allowed and may help to make
your calculation more accurate.)

For a bigger challenge, take a look at Exercise 8.15 on page 398, which invites you to
write a program to calculate the chaotic motion of the double pendulum.

Exercise 8.5: The driven pendulum

A pendulum like the one in Exercise 8.4 can be driven by, for example, exerting a small
oscillating force horizontally on the mass. Then the equation of motion for the pendu-
lum becomes

d%0 g . .
PE="7 sin@ + C cos 0 sin (),
where C and () are constants. 4

a) Write a program to solve this equation for 8 as a function of time with £ = 10cm,
C =2s72and Q = 557! and make a plot of 8 as a function of time from t = 0 to
t = 100s. Start the pendulum at rest with # = 0 and d8/d¢ = 0.

b) Now change the value of (), while keeping C the same, to find a value for which
the pendulum resonates with the driving force and swings widely from side to
side. Make a plot for this case also.

Exercise 8.6: Harmonic and anharmonic oscillators

The simple harmonic oscillator arises in many physical problems, in mechanics, elec-
tricity and magnetism, and condensed matter physics, among other areas. Consider the

standard oscillator equation

d
W = —wX.

351



CHAPTER 8

352

ORDINARY DIFFERENTIAL EQUATIONS

a)

b)

d)

e)

Using the methods described in the preceding section, turn this second-order
equation into two coupled first-order equations. Then write a program to solve
them for the case w = 1 in the range from t - 0to t = 50. A second-order
equation requires two initial conditions, one on x and one on its derivative. For
this problem use x = 1 and dx/dt = 0 as initial conditions. Have your program
make a graph showing the value of x as a function of time.

Now increase the amplitude of the oscillations by making the initial value of x
bigger—say x = 2—and confirm that the period of the oscillations stays roughly
the same.

Modify your program to solve for the motion of the anharmonic oscillator de-
scribed by the equation

dx

dr
Again take w = 1 and initial conditions x = 1 and dx/dt = 0 and make a plot of
the motion of the oscillator. Again increase the amplitude. You should observe
that the oscillator oscillates faster at higher amplitudes. (You can try lower am-
plitudes too if you like, which should be slower.) The variation of frequency with
amplitude in an anharmonic oscillator was studied previously in Exercise 5.10.

= —w?x.

Modify your program so that instead of plotting x against ¢, it plots dx/dt against
x, i.e., the “velocity” of the oscillator against its “position.” Such a plot is called
a phase space plot.

The van der Pol oscillator, which appears in electronic circuits and in laser physics,
is described by the equation

d’x dx

a—t—z — }l(l —xz)a +w2x = O
Modify your program to solve this equation from ¢ = 0tot — 20 and hence make
a phase space plot for the van der Pol oscillator with w = 1, ¢ = 1, and initial
conditions x = 1 and dx/dt = 0. Try it also for p = 2 and u = 4 (still with
w = 1). Make sure you use a small enough value of the time interval /i to geta
smooth, accurate phase space plot.

Exercise 8.7: Trajectory with air resistance

Many elementary mechanics problems deal with the physics of objects moving or fly-
ing through the air, but they almost always ignore friction and air resistance to make
the equations solvable. If we're using a computer, however, we don’t need solvable
equations.

Consider, for instance, a spherical cannonball shot from a cannon standing on level
ground. The air resistance on a moving sphere is a force in the opposite direction to the
motion with magnitude

F = 1nR*pCv?,




8.3 | SECOND-ORDER DIFFERENTIAL EQUATIONS

where R is the sphere’s radius, p is the density of air, v is the velocity, and C is the
so-called coefficient of drag (a property of the shape of the moving object, in this case a
sphere).
a) Starting from Newton’s second law, F = ma, show that the equations of motion
for the position (x, y) of the cannonball are

,_ mR»C , o . nRpC o
X=-— X X+ y4, j=-g- Y Xs +ys,

where m is the mass of the cannonball, g is the acceleration due to gravity, and ¥
and ¥ are the first and second derivatives of x with respect to time.

b

=

Change these two second-order equations into four first-order equations using
the methods you have learned, then write a program that solves the equations
for a cannonball of mass 1kg and radius 8 cm, shot at 30° to the horizontal with
initial velocity 100ms~'. The density of air is p = 1.22 kg m~2 and the coefficient
of drag for a sphere is C = 0.47. Make a plot of the trajectory of the cannonball
(i.e., a graph of y as a function of x).

¢) When one ignores air resistance, the distance traveled by a projectile does not de-
pend on the mass of the projectile. In real life, however, mass certainly does make
a difference. Use your program to estimate the total distance traveled (over hori-
zontal ground) by the cannonball above, and then experiment with the program
to determine whether the cannonball travels further if it is heavier or lighter. You
could, for instance, plot a series of trajectories for cannonballs of different masses,
or you could make a graph of distance traveled as a function of mass. Describe
briefly what you discover.

Exercise 8.8: Space garbage

»

A heavy steel rod and a spherical ball-bearing, discarded by a passing spaceship, are
floating in zero gravity and the ball bearing is orbiting around the rod under the effect
of its gravitational pull:

Ball bearing /' !

/

‘\gl
o

353



CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

For simplicity we’ll assume that the rod is of negligible cross-section and heavy enough
that it doesn’t move significantly, and that the ball bearing is orbiting around the rod’s
mid-point in a plane perpendicular to the rod.
a) Treating the rod as a line of mass M and length L and the ball bearing as a point
mass m, show that the attractive force F felt by the ball bearing in the direction
toward the center of the rod is given by

2 L/2
V + /L/Z Y2+y +ZZ)3/2'

where G is Newton's grav1tat10nal constant and x and y are the coordinates of
the ball bearing in the plane perpendicular to the rod. The integral can be done
in closed form and gives

_ GMm

R EERICET )
Hence show that the equations of motion for the position x, y of the ball bearing
in the xy-plane are

d’x M x &y _ _GM y
e 2V + 1274 e 2+ 12/4°
wherer = /x2 4+ 2.

b) Convert these two second-order equations into four first-order ones using the
techniques of Section 8.3. Then, working in units where G = 1, write a program
to solve them for M = 10, L = 2, and initial conditions (x,y) = (1,0) with
velocity of +1 in the y direction. Calculate the orbit from ¢t = 0 to ¢ = 10 and
make a plot of it, meaning a plot of y against x. You should find that the ball
bearing does not orbit in a circle or ellipse as a planet does, but has a precessing
orbit, which arises because the attractive force is not a simple 1/ r? force as it is
for a planet orbiting the Sun.

Exercise 8.9: Vibration in a one-dimensional system

In Example 6.2 on page 235 we studied the motion of a system of N identical masses (in
zero gravity) joined by identical linear springs like this:

¢ 000 o000 - 000 e (00 e

As we showed, the horizontal displacements ; of masses i = 1... N satisfy equations

of motion
% =k(.—C1)+F,
dz'::
m—z = k(Giv1 = &i) +k(Gi-1 = &) + F,
ddtgzN =k(Zn-1 — Cn) + Fn.

354




8.4 | VARYING THE STEP SIZE

where m is the mass, k is the spring constant, and F; is the external force on mass i. In
Example 6.2 we showed how these equations could be solved by guessing a form for
the solution and using a matrix method. Here we’ll solve them more directly.

a) Write a program to solve for the motion of the masses using the fourth-order
Runge-Kutta method for the case we studied previously where m = 1 and k = 6,
and the driving forces are all zero except for F; = cos wt with w = 2. Plot your
solutions for the displacements ¢; of all the masses as a function of time from
t = 0to t = 20 on the same plot. Write your program to work with general N,
but test it out for small values—N = 5 is a reasonable choice.

You will need first of all to convert the N second-order equations of motion
into 2N first-order equations. Then combine all of the dependent variables in
those equations into a single large vector r to which you can apply the Runge-
Kutta method in the standard fashion.

b) Modify your program to create an animation of the movement of the masses,
represented as spheres on the computer screen. You will probably find the rate
function discussed in Section 3.5 useful for making your animation run at a sen-
sible speed.

8.4 VARYING THE STEP SIZE

The methods we have seen so far in this chapter all use repeated steps of a
fixed size h, the size being chosen by you, the programmer. In most situations,
however, we can get better results if we allow the step size to vary during the
running of the program, with the program choosing the best value at each step.

Suppose we are solving a first-order differential pquation of the general
form dx/dt = f(x,t) and suppose as a function of time the solution looks
something like Fig. 8.6. In some regions the function is slowly varying, in
which case we can accurately capture its shape with only a few, widely spaced
points. But in the central region of the figure the function varies rapidly and
in this region we need points that are more closely spaced. If we are allowed
to vary the size h of our steps, making them large in the regions where the
solution varies little and small when we need more detail, then we can calcu-
late the whole solution faster (because we need fewer points overall) but still
very accurately (because we use small step sizes in the regions where they are
needed). This type of scheme is called an adaptive step size method, and some
version of it is used in most large-scale numerical solutions of differential equa-
tions.

The basic idea behind an adaptive step size scheme is to vary the step
sizes h so that the error introduced per unit interval in ¢ is roughly constant.

355



CHAPTER 8 J ORDINARY DIFFERENTIAL EQUATIONS

Figure 8.6: Adaptive step sizes. When solving a differential equation whose solu-
tion x(t) varies slowly with t in some regions but more rapidly in others, it makes sense
to use a varying step size. When the solution is slowly varying a large step size will
give good results with less computational effort. When the solution is rapidly varying
we must use smaller steps to get good accuracy.

For instance, we might specify that we want an error of 0.001 per unit time, or
less, so that if we calculate a solution from say t = 0tot = 10 we will get a
total error of 0.01 or less. We achieve this by making the step size smaller in

regions where the solution is tricky, but we must be careful because if we use
smaller steps we will also need to take more steps and the errors pile up, so
each individual step will have to be more accurate overall.

In practice the adaptive step size method has two parts. First we have to
estimate the error on our steps, then we compare that error to our required
accuracy and either increase or decrease the step size to achieve the accuracy
we want. Here’s how the approach works when applied to the fourth-order
Runge-Kutta method.

We choose some initial value of i—typically very small, to be on the safe
side—and, using our ordinary Runge-Kutta method, we first do two steps of
the solution, each of size h, one after another—see Fig. 8.7. So if we start at
time £, we will after two steps get to time t 4+ 2/1 and get an estimate of x (¢ + 2h).
Now here’s the clever part: we go back to the start again, to time t, and we do
one more Runge—Kutta step, but this time of twice the size, i.e., of size 2. This
third larger step also takes us to time t 4 2/ and gives us another estimate of
x(t + 2h), which will usually be close to but slightly different from the first esti-
mate, since it was calculated in a different way. It turns out that by comparing

356




8.4 | VARYING THE STEP SIZE

\j

t t+2h
Figure 8.7: The adaptive step size method. Starting from some time ¢, the method
involves first taking two steps of size /i each, then going back to ¢ again and taking

a single step of size 2/i. Both give us estimates of the solution at time ¢ + 2/ and by
comparing these we can estimate the error.

the two estimates we can tell how accurate our calculation is.

The fourth-order Runge-Kutta method is accurate to fourth order but the
error on the method is fifth order. That is, the size of the error on a single step
is ch® to leading order for some constant c. So if we start at time f and do two
steps of size /i then the error will be roughly 2ch®. That is, the true value of
x(t 4 2h) is related to our estimated value, call it x;, by

x(t+2h) = x; + 2ch®. (8.47)

On the other hand, when we do a single large step of size 2h the error is
¢(2h)® = 32ch®, and so
x(t+2h) = x5 +32ch5, (8.48)

where x; is our second estimate of x(t + 2/1). Equating these two expressions
we get X1 = x3 + 30ch®, which implies that the per-step error € = ¢/’ on steps
of size 1 is

€=ch® = 35 (X1 — 12). (8.49)

Our goal is to make the size of this error exactly equal to some target ac-
curacy that we choose. In general, unless we are very lucky, the two will not
be exactly equal. Either Eq. (8.49) will be better than the target, which means

357



CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

we are performing steps that are smaller than they need to be and hence wast-
ing time, or it will be worse than the target, which is unacceptable—the whole
point here is to perform a calculation that meets the specified target accuracy.

So let us ask the following question: what size would our steps have to be
to make the size of the error in Eq. (8.49) exactly equal to the target, to make
our calculation exactly as accurate as we need it to be but not more? Let us
denote this perfect step size Ii’. If we were to take steps of size k' then the error
on a single step would be

, /5 s > 1 W\°
€ =ch” =ch T = 35(x1 — x2) ) (8.50)

where we have used Eq. (8.49). At the same time suppose that the target accu-
racy per unit time for our calculation is §, which means that the target accuracy
for a single step of size i’ would be /1"5. We want to find the value of #’ such
that the actual accuracy (8.50) is equal to this target accuracy. We are only in-
terested in the absolute magnitude of the error, not its sign, so we want the I/
that satisfies

35 1x1 — x2] (%)5 =Ws. (8.51)
Rearranging for i’ we then find that
W=h (%) v = hp'/4, (8.52)
where 30hs
= | (8.53)

which is precisely the ratio of the target accuracy hé and the actual accuracy
3|1 — x,| for steps of size h.

The complete method is now as follows. We perform two steps of size h and
then, starting from the same starting point, one step of size 2h. This gives us
our two estimates x; and x; of x(t 4 2i1). We use these to calculate the ratio p
in Eq. (8.53). If p > 1 then we know that the actual accuracy of our Runge-
Kutta steps is better than the target accuracy, so our calculation is fine, in the
sense that it meets the target, but it is wasteful because it is using steps that are
smaller than they need to be. So we keep the results and move on to time ¢ + 2k
to continue our solution, but we make our steps bigger the next time around
to avoid this waste. Plugging our value of p into Eq. (8.52) tells us exactly what
the new larger value /' of the step size should be to achieve this.

58




8.4 | VARYING THE STEP SIZE

Conversely, if p < 1 then the actual accuracy of our calculation is poorer
than the target accuracy—we have missed our target and the current step of
the calculation has failed. In this case we need to repeat the current step again,
but with a smaller step size, and again Eq. (8.52) tells us what that step size
should be.

Thus, after each step of the process, depending on the value of p, we either
increase the value of i and move on to the next step or decrease the value of /
and repeat the current step. Note that for the actual solution of our differential
equation we always use the estimate x; for the value of x, not the estimate x,,
since x; was made using smaller steps and is thus, in general, more accurate.
The estimate x, made with the larger step is used only for calculating the error
and updating the step size, never for calculating the final solution.

The adaptive step size method involves more work for the computer than
methods that use a fixed step size—we have to do at least three Runge-Kutta
steps for every two that we actually use in calculating the solution, and some-
times more than three in cases where we have to repeat a step because we
missed our target accuracy. However, the extra effort usually pays off because
the method gets you an answer with the accuracy you require with very lit-
tle waste. In the end the program almost always takes less time to run, and
usually much less.

It is possible, by chance, for the two estimates x; and x, to coincidentally
agree with one another—errors are inherently unpredictable and the two can
occasionally be the same or roughly the same just by luck. If this happens, I in
Eq. (8.52) can erroneously become very large or diverge, causing the calcula-
tion to break down. To prevent this, one commonly places an upper limit on
how much the value of / can increase from one step to another. For instance,
a common rule of thumb is that it should not increase by more than a factor of
two on any given pair of steps (pairs of successive steps being the fundamental
unit in the method described here).

The adaptive step size method can be used to solve simultaneous differen-
tial equations as well as single equations. In such cases we need to decide how
to generalize the formula (8.49) for the error, or equivalently the formula (8.53)
for the ratio p, to the case of more than one dependent variable. The derivation
leading to Eq. (8.49) can be duplicated for each variable to show that variables
X, y, etc. have separate errors

a=gmri—x), e=i0-n) (8.54)

and so forth. There is, however, more than one way that these separate errors

359



CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

can be combined into a single overall error for use in Eq. (8.53), depending on
the particular needs of the calculation. For instance, if we have variables x and
y that represent coordinates of a point in a two-dimensional space, we might
wish to perform a calculation that ensures that the Euclidean error in the po-
sition of the point meets a certain target, where by Euclidean error we mean
Ve: + €. In that case it is straightforward to see that we would use the same
formulas for the adaptive method as before, except that &|x; — x,| in Eq. (8.53)
should be replaced with V2 + €2. On the other hand, suppose we are perform-
ing a calculation like that of Example 8.6 for the nonlinear pendulum, where
we are solving a single second-order equation for 6 but we introduce an ad-
ditional variable w to turn the problem into two first-order equations. In that
case we don'’t really care about w—it is introduced only for convenience—and
its accuracy doesn’t matter so long as 6 is calculated accurately. In this situation
we would use Eq. (8.53) directly, with x replaced by 6, and ignore w in the cal-
culation of the step sizes. (An example of such a calculation for the nonlinear
pendulum is given below.) Thus it may take a little thought to determine, for
any particular calculation, what the appropriate generalization of the adaptive
method is to simultaneous equations, but the answer usually becomes clear
once one determines the correct definition for the error on the calculation.

One further point is worth making about the adaptive step size method. It
may seem unnecessarily strict to insist that we repeat the current step of the
calculation if we miss our target accuracy. One might imagine that one could
get reasonable answers if we always moved on to the next step, even when we
miss our target: certainly there will be some steps where the error is a little
bigger than the target value, but there will be others where it is a little smaller,
and with luck it might all just wash out in the end—the total error at the end
of the calculation would be roughly, if not exactly, where we want it to be.
Unfortunately, however, this usually doesn’t work. If one takes this approach,
then one often ends up with a calculation that significantly misses the required
accuracy target because there are a few steps that have unusually large errors.
The problem is that the errors are cumulative—a large error on even one step
makes all subsequent steps inaccurate too. If errors fluctuate from step to step
then at some point you are going to get an undesirably large error which can
doom the entire calculation. Thus it really is important to repeat steps that
miss the target accuracy, rather than just letting them slip past, so that you can
be certain no step has a very large error.

As an example of the adaptive step size method let us return once more
to the nonlinear pendulum of Example 8.6. Figure 8.8 shows the results of a

360




8.4 | VARYING THE STEP SIZE

Angle of displacement 6
(=]
I

Time ¢

Figure 8.8: Motion of a nonlinear pendulum. This figure shows the angle 6 of dis-
placement of a nonlinear pendulum from the vertical as a function of time, calculated
using the adaptive step size approach described in this section. The vertical dotted lines
indicate the position of every twentieth Runge—Kutta step.

calculation of the motion of such a pendulum using adaptive step sizes. The
solid curve shows the angle of displacement of the pe;ndulum as a function of
time—the wavelike form indicates that it's swinging back and forth. The ver-
tical lines in the plot show the position of every twentieth Runge-Kutta step in
the calculation (i.e., every tenth iteration of the adaptive method, since we al-
ways take two Runge-Kutta steps at once). As you can see from the figure, the
method makes the step sizes longer in the flat portions of the curve at the top
and bottom of each swing where little is happening, but in the steep portions
where the pendulum is moving rapidly the step sizes are much smaller, which
ensures accurate calculations of the motion,

Exercise 8.10: Cometary orbits

Many comets travel in highly elongated orbits around the Sun. For much of their lives
they are far out in the solar system, moving very slowly, but on rare occasions their
orbit brings them close to the Sun for a fly-by and for a brief period of time they move
very fast indeed:

361

B ————— 2l



CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

fast here el S slow here

This is a classic example of a system for which an adaptive step size method is useful,
because for the large periods of time when the comet is moving slowly we can use long
time-steps, so that the program runs quickly, but short time-steps are crucial in the brief
but fast-moving period close to the Sun.

The differential equation obeyed by a comet is straightforward to derive. The force
between the Sun, with mass M at the origin, and a comet of mass m with position
vector r is GMm/r? in direction —r/r (i.e., the direction towards the Sun), and hence
Newton'’s second law tells us that

md_zr__ GMm\ r
de2 — r2 r

Canceling the m and taking the x component we have

d2x x

- =-GM=,

de r
and similarly for the other two coordinates. We can, however, throw out one of the
coordinates because the comet stays in a single plane as it orbits. If we orient our axes
so that this plane is perpendicular to the z-axis, we can forget about the z coordinate
and we are left with just two second-order equations to solve:

d?x x d?y

- _cMmX Y _ _omi
az = Mz qE = -CMg.

wherer = /x2 4+ 2.

a) Turn these two second-order equations into four first-order equations, using the
methods you have learned.

b) Write a program to solve your equations using the fourth-order Runge-Kutta
method with a fixed step size. You will need to look up the mass of the Sun
and Newton'’s gravitational constant G. As an initial condition, take a comet at
coordinates x = 4 billion kilometers and y = 0 (which is somewhere out around
the orbit of Neptune) with initial velocity v, = 0 and vy = 500ms~!. Make a
graph showing the trajectory of the comet (i.e., a plot of y against x).

Choose a fixed step size & that allows you to accurately calculate at least two
full orbits of the comet. Since orbits are periodic, a good indicator of an accurate
calculation is that successive orbits of the comet lie on top of one another on your
plot. If they do not then you need a smaller value of /i. Give a short description

362




8.4 | VARYING THE STEP SIZE

of your findings. What value of h did you use? What did you observe in your
simulation? How long did the calculation take?

¢) Make a copy of your program and modify the copy to do the calculation using
an adaptive step size. Set a target accuracy of § = 1 kilometer per year in the
position of the comet and again plot the trajectory. What do you see? How do the
speed, accuracy, and step size of the calculation compare with those in part (b)?

d) Modify your program to place dots on your graph showing the position of the
comet at each Runge-Kutta step around a single orbit. You should see the steps
getting closer together when the comet is close to the Sun and further apart when
it is far out in the solar system.

Calculations like this can be extended to cases where we have more than one orbit-
ing body—see Exercise 8.16 for an example. We can include planets, moons, asteroids,
and others. Analytic calculations are impossible for such complex systems, but with
careful numerical solution of differential equations we can calculate the motions of ob-
jects throughout the entire solar system.

Here's one further interesting wrinkle to the adaptive method. Recall Eq.
(8.47), which relates the results of a “double step” of the method to the solution
of the differential equation:

x(t+ 2h) = x1 + 2ch® 4+ O(KS). (8.55)

(We have added the O(h®) here to remind us of the next term in the series.)
We also know from Eq. (8.49) that

ch® = L(x1—x), °* (8.56)

where x; and x; are the two estimates of x(t + 2k) calculated in the adaptive
method. Substituting (8.56) into (8.55), we find that

x(t42h) = x1 4 & (x1 — x2) + O(KS), (8.57)

which is now accurate to order i and has a error of order i®*—one order bet-
ter than the standard fourth-order Runge-Kutta method. Equation (8.57) in-
volves only quantities we have already computed in the course of the adap-
tive method, so it's essentially no extra work to calculate this more accurate
estimate of the solution.

This trick is called local extrapolation. It is a kind of free bonus prize that
comes along with the adaptive method, giving us a more accurate answer for
no extra work. The only catch with it is that we don’t know the size of the

363



CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

error on Eq. (8.57). It is, presumably, better than the error on the old fourth-
order result (which is 2ch®, with cIi® given by Eq. (8.56)), but we don’t know by
how much.

It is an easy extra step to incorporate local extrapolation into adaptive cal-
culations. We could have used it in our solution of the motion of the pendulum
in Fig. 8.8, for example. You could use it if you do Exercise 8.10 on calculat-
ing cometary orbits. It typically offers at least a modest improvement in the
accuracy of your results.

The real interest in extrapolation, however, arises when we take the method
further. It is possible to use methods similar to this not only to eliminate
the leading-order error (the O(k°) term in Eq. (8.55)), but also any number
of higher-order terms as well, resulting in impressively accurate solutions to
differential equations even when using quite large values of h. The technique
for doing this is called Richardson extrapolation and it’s the basis of one of the
most powerful methods for solving differential equations. Richardson extrap-
olation, however, is not usually used with the Runge-Kutta method, but rather
with another method, called the “modified midpoint method,” which we will
examine in Section 8.5.4.

8.5 OTHER METHODS FOR DIFFERENTIAL EQUATIONS

So far in this chapter we have concentrated our attention on the Runge-Kutta
method for solving differential equations. The Runge-Kutta method is a ro-
bust, accurate method that’s easy to program and gives good results in most
cases. [t is, however, not the only method available. There are a number of
other methods for solving differential equations that, while less widely used
than the Runge-Kutta method, are nonetheless useful in certain situations. In
this section we look at several additional methods, including the leapfrog and
Verlet methods, and the Bulirsch-Stoer method, which combines a modified
version of the leapfrog method with Richardson extrapolation to create one
of the most accurate methods for solving differential equations (although it is
also quite complex to program).

8.5.1 THE LEAPFROG METHOD
Consider a first-order differential equation in a single variable:

) (8.58)

364




8.5 | OTHER METHODS FOR DIFFERENTIAL EQUATIONS

t t+h t+2h t+3h t+4h

Figure 8.9: Second-order Runge-Kutta and the leapfrog method. (a) A diagrammatic
representation of the calculations involved in the second-order Runge-Kutta method.
On every step we use the starting position to calculate a value at the midpoint (open
circle), then use that value to calculate the value at the end of the interval (filled circle).
(b) The leapfrog method starts out the same, with a half step to the first midpoint and a
full step to the end of the first interval. But thereafter each midpoint is calculated from
the previous midpoint.

In Section 8.1.2 we introduced the second-order Runge-Kutta method (also
sometimes called the midpoint method) in which, given the value of the de-
pendent variable x at time ¢, one estimates its value at t + h by using the slope
at the midpoint f(x(t + 3/),t + 1h). Because one doesn’t normally know the
value x(t + 3h), one first estimates it using Euler’s method. The equations for

the method can be written thus: ’
x(t+ 3h) = x(t) + 1hf(x, 1), (8.59a)
x(t+h) = x(t) + hf(x(t+ 1h), t + Lh). (8.59b)

This is a slightly different way of writing the equations from the one we used
previously (see Eq. (8.13)) but it is equivalent and it will be convenient for what
follows.

The second-order Runge-Kutta method involves using these equations re-
peatedly to calculate the value of x at intervals of / as far as we wish to go.
Each step is accurate to order h? and has an error of order />. When we com-
bine many steps, one after another, the total error is one order of /1 worse (see
Section 8.1.1), meaning it is of order 4? in this case.

Figure 8.9a shows a simple graphical representation of what the Runge—
Kutta method is doing. At each step we calculate the solution at the midpoint,

365



CHAPTER 8 J ORDINARY DIFFERENTIAL EQUATIONS

and then use that solution as a stepping stone to calculate the value at ¢ +
h. The leapfrog method is a variant on this idea, as depicted in Fig. 8.9b. This
method starts out the same way as second-order Runge-Kutta, with a half-step
to the midpoint, follow by a full step to calculate x(¢ + k). But then, for the next
step, rather than calculating the midpoint value from x(t + 1) as we would in
the Runge-Kutta method, we instead calculate it from the previous midpoint
value x(f + 3/). In mathematical language we have

x(t+3h) = x(t+ 3h) + hf(x(t + h), t + h). (8.60)

In this calculation f(x(t + k), t + h) plays the role of the gradient at the mid-
point between t + %h and t + %h, so the calculation has second-order accuracy
again and a third-order error. Moreover, once we have x(t + %h) we can use it
to do the next full step thus:

x(t+2h) = x(t+h) + hf(x(t + 3h),t + 3h). (8.61)

And we can go on repeating this process as long as we like. Given values of
x(t) and x(t + 3h), we repeatedly apply the equations

x(t+h) =x(t) + hf(x(t+ 3h),t + 1h), (8.62a)
x(t+3h) = x(t+ 3h) + hf(x(t +h),t + h). (8.62b)

This is the leapfrog method, so called because each step “leaps over” the
position of the previously calculated value. Like the second-order Runge-
Kutta method, each step of the method is accurate to order h? and carries an
error of order /3. If we compound many steps of size h then the final result
is accurate to order h and carries an h? error. The method can be extended
to the solution of simultaneous differential equations just as the Runge-Kutta
method can, by replacing the single variable x with a vector r and the func-
tion f(x, t) with a vector function £(r, t):

r(t+h) = r(t) + hf(r(t + 3h), t + 1h), (8.63a)
r(t+3h) =r(t+ 3h) + hf(x(t + k), t + h). (8.63b)

It can also be extended to the solution of second- or higher-order equations by
converting the equations into simultaneous first-order equations, as shown in
Section 8.3.

On the face of it, however, it's not immediately clear why we would want to
use this method. It’s true it is quite simple, but the fourth-order Runge-Kutta

366




8.5 I OTHER METHODS FOR DIFFERENTIAL EQUATIONS

method is not much more complicated and significantly more accurate for al-
most all calculations. But the leapfrog method has two significant virtues that
make it worth considering. First, it is time-reversal symmetric, which makes it
useful for physics problems where energy conservation is important. And sec-
ond, its error is even in the step size &, which makes it ideal as a starting point
for the Richardson extrapolation method mentioned at the end of Section 8.4.
In the following sections we look at these issues in more detail.

8.5.2 TIME REVERSAL AND ENERGY CONSERVATION

The leapfrog method is time-reversal symmetric. When we use the method
to solve a differential equation, the state of the calculation at any time #; is
completely specified by giving the two values x(t;) and x(#; + 1h). Given only
these values the rest of the solution going forward in time can be calculated by
repeated application of Eq. (8.62). Suppose we continue the solution to a later
time ¢ = #,, calculating values up to and including x(t,) and x(t; + 3#). Time-
reversal symmetry means that if we take these values and use the leapfrog
method backwards, with time interval —h equal to minus the interval we used
in the forward calculation, then we will retrace our steps and recover the exact
values x(t;) and x(t; + 3h) at time t; (apart from any rounding error).
To see this let us set 1 — —h in Eq. (8.62):

x(t—h) = x(t) — hf(x(t — 3h),t - 1h), (8.64a)
x(t—3h) = x(t — 1h) — hf(x(t — h),t — h). (8.64b)
Now put  — ¢ + 3h and we get ’
x(t+3h) = x(t+ 3h) —hf (x(t+h),t + h), (8.65a)
x(t) = x(t +h) — hf (x(t + 1n), t + Lh). (8.65b)

These equations give us the values of x(t) and x(t + 1h) in terms of x(¢ + h)
and x(t + 3h). But if you compare these equations to Eq. (8.62), you'll see that
they are simply performing the same mathematical operations as the forward
calculation, only in reverse—everywhere we previously added a term ki f(x, t)
we now subtract it again. Thus when we use the leapfrog method with step
size —h to solve a differential equation backwards, we get the exact same val-
ues x(t) at every time-step that we get when we solve the equation forwards.
The same is not true of, for example, the second-order Runge-Kutta method.
If you put b — —h in Eq. (8.59), the resulting equations do not give you
the same mathematical operations as the forward Runge-Kutta method. The

367



CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

—

We consider one full
swing of the pendu-
lum, starting on one
side and swinging
across then back.

368

method will give you a solution in either the forward or backward direction,
but the solutions will not agree exactly, in general, even after you allow for
rounding error.

Why is time-reversal symmetry important? It turns out that it has a couple
of useful implications. One concerns the conservation of energy.

Consider as an illustration the frictionless nonlinear pendulum, which we
studied in Example 8.6. The motion of the pendulum is given by Egs. (8.45)
and (8.46), which read

% = w, ‘3—‘:’ = —%sin@. (8.66)
If we solve these equations using a Runge-Kutta method we can get a pretty
good solution, as shown in Fig. 8.8 on page 361, but it is nonetheless only ap-
proximate, as nearly all computer calculations are. Among other things, this
means that the total energy of the system, kinetic plus potential, is only ap-
proximately constant during the calculation. A frictionless pendulum should
have constant energy, but the Runge-Kutta method isn’t perfect and energies
calculated using it tend to fluctuate and drift slightly over time. The top panel
of Fig. 8.10 shows results from a solution of the equations above using the
second-order Runge-Kutta method and the drift of the total energy with time
is clearly visible. (We have deliberately used the less accurate second-order
method in this case to make the drift larger and easier to see. With the fourth-
order Runge-Kutta method, which is more accurate, the drift would be signif-
icantly smaller, though it would still be there.)

Now suppose we solve the same differential equations using the leapfrog
method. Imagine doing so for one full swing of the pendulum. The pendu-
lum starts at the furthest limit of its swing, swings all the way across, then all
the way back again. In real life, the total energy of the system must remain
constant throughout the motion, and in particular it must be the same when
the pendulum returns to its initial point as it was when it started out. Our so-
lution using the leapfrog method, on the other hand, is only approximate, so
it’s possible the energy might drift. Let us suppose for the sake of argument
that it drifts upward, as it did for the Runge-Kutta method in the top panel of
Fig. 8.10, so that its value at the end of the swing is slightly higher than at the
beginning.

Now let us calculate the pendulum’s motion once again, still using the
leapfrog method but this time in reverse, starting at the end of the swing and
solving backwards, with minus the step size that we used in our forward cal-
culation. As we have shown, when we run the leapfrog method backwards in




8.5 I OTHER METHODS FOR DIFFERENTIAL EQUATIONS

8
0.01 [ g
o
50
5
0 1&
S
2
] r @
2,001 )
v 2 | 1 | ) IS
5]
E [ T T ) T T ]
S 004 H
&
0 &
B
r —1
-0.04 - -
[ | | H L l L " ]
0 2 4 6 8 10

Time

Figure 8.10: Total energy of the nonlinear pendulum. Top: The total energy, potential
plus kinetic, of a nonlinear pendulum as a function of time, calculated using the second-
order Runge-Kutta method. Bottom: The same energy calculated using the leapfrog
method. Neither is constant, but the leapfrog method returns to the same value at the
end of each swing of the pendulum and so conserves energy in the long run, while the
energy calculated with Runge-Kutta drifts steadily away from the true value as time
passes.

2

this fashion it will retrace its steps and end up exactly at the starting point of
the motion again (apart from rounding error). Thus, if the energy increased
during the forward calculation it must decrease when we do things in reverse.

But here’s the thing. The physics of the pendulum is itself time-reversal
symmetric. The motion of swinging across and back, the motion that the pen-
dulum makes in a single period, is exactly the same backwards as it is for-
wards. Hence, when we perform the backward solution we are solving for the
exact same motion and moreover doing it using the exact same method (since
we are using the leapfrog method in both directions). This means that the val-
ues of the variables 8 and w will be exactly the same at each successive step of
the solution in the reverse direction as they were going forward. Hence, if the
energy increased during the forward solution it must also increase during the
backward one.

369



CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

Now we have a contradiction. We have shown that if the energy increases
during the forward calculation then it must both decrease and increase dur-
ing the backward one. Clearly this is impossible—it cannot do both—and
hence we conclude that it cannot have increased during the forward calcu-
lation. An analogous argument shows it cannot decrease either, so the only
remaining possibility is that it stays the same. In other words, the leapfrog
method conserves energy. The total energy of the system will stay constant
over time when we solve the equations using the leapfrog method, except for
any small changes introduced by rounding error.

There are a couple of caveats. First, even though the energy is conserved
we should not make the mistake of assuming this means our solution for the
motion is exact. It isn’t. The leapfrog method only gives approximate solutions
for differential equations—as discussed in Section 8.5.1 the method is only ac-
curate to second order on each step and has a third-order error. So the values
we get for the angle 6 for our pendulum, for example, will not be exactly cor-
rect, even though the energy is constant.

Second, the argument we have given applies to a full swing of the pendu-
lum. It tells us that the energy at the end of a full swing will be the same as
it was at the beginning. It does not tell us that the energy will be conserved
throughout the swing, and indeed, as we will see, it is not. The energy may
fluctuate during the course of the pendulum swing, but it will always come
back to the correct value at the end of the swing. More generally, if the leapfrog
method is used to solve equations of motion for any periodic system, such as
a pendulum or a planet orbiting a star, then energy will be conserved over any
full period of the system (or many full periods), but it will not, in general, be
conserved over fractions of a period.

If we can live with these limitations, however, the leapfrog method can
be useful for solving the equations of motion of energy conserving physical
systems over long periods of time. If we wait long enough, a solution using
a Runge-Kutta method will drift in energy—the pendulum might run down
and stop swinging, or the planet might fall out of orbit and into its star. But a
solution using the leapfrog method will run forever.

As an example look again at Fig. 8.10. The bottom panel shows the total
energy of the nonlinear pendulum calculated using the leapfrog method and
we can see that indeed it is constant on average over long periods of time—
many swings of the pendulum—even though it oscillates over the course of
individual swings. As the figure shows, the accuracy of the energy in the short
term is actually poorer than the second-order Runge—Kutta method (notice that

370




8.5 | OTHER METHODS FOR DIFFERENTIAL EQUATIONS

the vertical scales are different in the two panels), but in the long term the
leapfrog method will be far better than the Runge—Kutta method, as the latter
drifts further and further from the true value of the energy.

8.5.3 THE VERLET METHOD

Suppose, as in the previous section, that we are using the leapfrog method to
solve the classical equations of motion for a physical system. Such equations,
derived from Newton’s second law F = ma, take the form of second-order
differential equations

d?x

e = f(x,t), (8.67)
or the vector equivalent when there is more than one dependent variable. Ex-
amples include the motion of projectiles, the pendulum of the previous section,
and the cometary orbit of Exercise 8.10. As we have seen, we can convert such
equations of motion into coupled first-order equations

j_’t‘ ~ 0, ‘;_‘t’ — f(x 1) (8.68)
where we use the variable name v here as a reminder that, when we are talking
about equations of motion, the quantity it represents is a velocity (or some-
times an angular velocity, as in the case of the pendulum).

If we want to apply the leapfrog method to these equations the normal
strategy would be to define a vector r = (x, v), combine the two equations (8.68)

into a single vector equation ;
3—; = f(r,t), (8.69)
and then solve this equation for r using the leapfrog method.

Rather than going this route, however, let us instead write out the leapfrog
method in full, as applied to (8.68). If we are given the value of x at some time ¢
and the value of v at time ¢ + 3k then, applying the method, the value of x a

time interval & later is
x(t+h) = x(t) + ho(t + 1h). (8.70)
And the value of v an interval h later is
o(t+ 3n) =v(t+ 1h) + hf(x(t + k), t +h). (8.71)

We can derive a full solution to the problem by using just these two equations
repeatedly, as many times as we wish. Notice that the equations involve the

371



CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

value of x only at time ¢ plus integer multiples of 1 and the value of v only at
half-integer multiples. We never need to calculate v at any of the integer points
or x at the half integers. This is an improvement over the normal leapfrog
method applied to the vector r = (x,v), which would involve solving for both
x and v at all points, integer and half-integer. Equations (8.70) and (8.71) re-
quire only half as much work to evaluate as the full leapfrog method.

This simplification works only for equations of motion or other differential
equations that have the special structure of Eq. (8.68), where the right-hand
side of the first equation depends on v but not x and the right-hand side of the
second equation depends on x but not v. Many physics problems, however,
boil down to solving equations of motion, so the method is widely applicable.

A minor problem with the method arises if we want to calculate some quan-
tity that depends on both x and v, such as a the total energy of the system.
Potential energy depends on position x while kinetic energy depends on ve-
locity v, so calculating the total energy, potential plus kinetic, at any time ¢,
requires us to know the values of both variables at that time. Unfortunately
we know x only at the integer points and v only at the half-integer points, so
we never know both at the same time.

But there’s an easy solution to this problem. We can calculate the velocity
at the integer points by doing an additional half step as follows. If we did
know v(t + h) then we could calculate v(t + 1h) from it by doing a half step
backwards using Euler’s method. That is, we would do Euler’s method with
a step size of —1h:

v(t+ 3h) =o(t+h) — Lhf(x(t +h), t+h). (8.72)

Alternatively, by rearranging this equation we can calculate v(t + i) from v(t +
3h) like this:
o(t+h) =v(t+ 3h) + Ihf(x(t +h), t + h). (8.73)

This equation gives us v at integer steps in terms of quantities we already know
from our leapfrog calculation, allowing us to calculate total energy (or any
other quantity) at each step.

A complete calculation combines Eqs. (8.70) and (8.71) with Eq. (8.73), plus
an initial half step at the very beginning to get everything started. Putting it
all together, here’s what we have.

We are given the initial values of x and v at some time ¢. Then

v(t+ 3h) = v(t) + Inf(x(t), ¢). (8.74)

372




8.5 | OTHER METHODS FOR DIFFERENTIAL EQUATIONS

Then subsequent values of x and v are derived by repeatedly applying

x(t+h) = x(t) + ho(t + 3h), (8.75a)
k=hf(x(t+h),t+h), (8.75b)
o(t+h) =v(t+ 3h) + 3k, (8.75¢)
v(t+ 3h) =v(t+ 1h) +k. (8.75d)

This variant of the leapfrog method is called the Verlet method after physicist
Loup Verlet, who discovered it in the 1960s (although it was known to others
long before that, as far back as the eighteenth century).
The method can be easily extended to equations of motion in more than

one dimension. If we wish to solve an equation of motion of the form

d%r

pri f(r,t), (8.76)
where r = (x,y,...) is a d-dimensional vector, then, given initial conditions
on r and the velocity v = dr/dt, the appropriate generalization of the Verlet
method involves first performing a half step to calculate v (¢ + 1h):

v(t+3h) = v(t) + Shf(x(t),t), (8.77)

then repeatedly applying the equations

r(t+h) =r(t) + hv(t+ 3h), (8.78a)
k = hf(r(t+ h),t h), (8.78b)
v(t+h) =v(t+1h) + 1k, (8.78c)
v(t+3h) = v(t+ 1h) + k. (8.78d)

Exercise 8.11: Write a program to solve the differential equation

d%x dx
dt

2
e —> +x+5=0

using the leapfrog method. Solve from ¢ = 0 to + = 50 in steps of h = 0.001 with initial
condition x = 1 and dx/dt = 0. Make a plot of your solution showing x as a function
of t.

373



CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

Exercise 8.12: Orbit of the Earth

Use the Verlet method to calculate the orbit of the Earth around the Sun. The equations
of motion for the position r = (x,y) of the planet in its orbital plane are the same as
those for any orbiting body and are derived in Exercise 8.10 on page 361. In vector
form, they are

d’r r

an = ~CM5.
where G = 6.6738 x 10~ m3kg 's ? is Newton’s gravitational constant and M =
1.9891 x 10* kg is the mass of the Sun.

The orbit of the Earth is not perfectly circular, the planet being sometimes closer to
and sometimes further from the Sun. When it is at its closest point, or perihelion, it is
moving precisely tangentially (i.e., perpendicular to the line between itself and the Sun)
and it has distance 1.4710 x 10" m from the Sun and linear velocity 3.0287 x 10 ms~!.

a) Write a program to calculate the orbit of the Earth using the Verlet method,
Egs. (8.77) and (8.78), with a time-step of i = 1 hour. Make a plot of the or-
bit, showing several complete revolutions about the Sun. The orbit should be
very slightly, but visibly, non-circular.

b) The gravitational potential energy of the Earth is —GMm /r, where m = 5.9722 x
10* kg is the mass of the planet, and its kinetic energy is §mv? as usual. Modify
your program to calculate both of these quantities at each step, along with their
sum (which is the total energy), and make a plot showing all three as a function
of time on the same axes. You should find that the potential and kinetic energies
vary visibly during the course of an orbit, but the total energy remains constant.

¢) Now plot the total energy alone without the others and you should be able to
see a slight variation over the course of an orbit. Because you're using the Verlet
method, however, which conserves energy in the long term, the energy should
always return to its starting value at the end of each complete orbit.

8.5.4 THE MODIFIED MIDPOINT METHOD

The leapfrog method offers another, more subtle, advantage over the Runge-
Kutta method, namely that the total error on the method, after many steps, is
an even function of the step size h. To put that another way, the expansion
of the error in powers of h contains only even terms and no odd ones. This
result will be crucial in the next section, where it forms the basis for a powerful
solution method for differential equations called the Bulirsch-Stoer method.
The argument that the error on the leapfrog method is even in h relies once
more on the fact that the method is time-reversal symmetric, as discussed in
Section 8.5.2. Recall that a single step of the leapfrog method is accurate up to
terms in h? and has an /3 error to leading order. More generally, we can write

374




8.5 | OTHER METHODS FOR DIFFERENTIAL EQUATIONS

the error on a single step as some function e(h) of the step size, with the first
term in that function being proportional to #. The question is what the other
terms look like.

Imagine taking a small step using the leapfrog method, which gives the
solution to our differential equation a short time later plus error e(h). Now
imagine taking the same step backwards, i.e., with step size —h. Given that the
leapfrog method is time-reversal symmetric—the change in the solution going
backwards is exactly the reverse of the change forwards—it follows that the
backward error €(—/) must be minus the forward one:

e(—h) = —e(h). (8.79)

This equation tells us that €(h) is an odd function. It is antisymmetric about the
origin and its Taylor expansion in powers of & can contain only odd powers.
We know the first term in the series is proportional to 42, so in general e(h)
must take the form

E(h) = C3h3 + Cshs + C7h7 +... (8.80)

and so on, for some set of constants c3, cs, . ..

But, as we've also seen, first for the Euler method in Section 8.1.1 and later
for the Runge-Kutta and leapfrog methods as well, if you perform many steps
of size h then the total, cumulative error over all of them is one order worse
in h than it is for each single step. Roughly speaking, if the error on a single
step is €(h) and it takes A/h steps to cover an interval of time A, then the
total error is of order €(h) x A/h, which is one order lower in k than e(h)
itself. Hence, given that in the present case (k) contains only odd powers of h
starting with /3, the total error on the leapfrog method, after many steps, must
contain only even powers, starting with #2.

This result is correct as far as it goes, but there is a catch. Recall that to
get the leapfrog method started, we initially take one half-step using Euler’s
method, as in Eq. (8.5%a) on page 365. This additional step introduces an error
of its own. That error is of size h? to leading order (as always with Euler’s
method), which is the same as the overall error on the leapfrog method and
hence makes the final error no worse in terms of the order of h. Unfortunately,
however, the higher-order terms in Euler’s method are not restricted to even
powers of h—all powers from h?* onward are present, meaning that this one
extra step at the start of the calculation spoils our result about even powers
above. The total error at the end of the whole calculation will now contain
both even and odd powers.

375




CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

There is, however, a solution for this problem. Suppose we wish to solve
our differential equation from some initial time t forward to a later time ¢ + H
(where H is not necessarily small) using n leapfrog steps of size h = H/n each.
Let us write the leapfrog method in a slightly different form from before. We

define
xp = x(t), (8.81a)
y1 = X0+ Shf(xo,t). (8.81b)
Then
x1=xo+hf(y,t+ %h), (8.82a)
2=y +hf(x,t+h), (8.82b)
X2 = x)+ hf(ya, t + 20), (8.82¢)

and so forth. The variables x,, here represent the solution at integer multiples
of  and the variables y,, at half-integer multiples. In general, we have

Ym+1 = Ym + hf(xlllr t+ mh)/ (8'833)
Ximt+1 = X + hf(}/m-i—lrt + (m + %)h) (8.83b)

The last two points in the solution are y, = x(t + H — ;h) and x, = x(t + H).
Normally, we would take the value of x,, as our final solution for x(t + H), but
there is another possibility: we can also calculate a final value from y,,. Using
the same trick that we used to derive Eqg. (8.73), we can write

x(t+H) =y, + thf(x,, t + H). (8.84)

Thus we have two different ways to calculate a value for x(t + H). Or we
can combine the two, Eq. (8.84) and the estimate x(t + H) = x,, taking their
average thus:

x(t+H) = 5[y +yu + 3hf(x0,t + H)|. (8.85)

Miraculously, it turns out that if we calculate x(t + H) from this equation then
the odd-order error terms that arise from the Euler’s method step at the start of
the leapfrog calculation cancel out, giving a total error on Eq. (8.85) that once
again contains only even powers of h. This result was originally proved by
mathematician William Gragg in 1965 and the resulting method is sometimes
called Gragg’s method in his honor, although it is more commonly referred to
as the modified midpoint method. The modified midpoint method combines the
leapfrog method in the form of Egs. (8.81) and (8.83) with Eq. (8.85) to make an

376




8.5 | OTHER METHODS FOR DIFFERENTIAL EQUATIONS

estimate of x(f + H) that carries a leading-order error of order h? and higher-
order terms containing even powers of /1 only.

The modified midpoint method is rarely used alone, since it offers little
advantage over either the ordinary leapfrog method (if you want an energy
conserving solution) or the fourth-order Runge-Kutta method (which is sig-
nificantly more accurate). It plays an important role, nonetheless, as the basis
for the powerful Bulirsch-Stoer method, which we study in the next section.

8.5.5 THE BULIRSCH-STOER METHOD

The Bulirsch-Stoer method for solving differential equations combines two
ideas we have seen already: the modified midpoint method and Richardson
extrapolation. It's reminiscent in some ways of the Romberg method for eval-
uating integrals that we studied in Section 5.4, and the equations are similar.
Here’s how it works.

We are given a differential equation, and for now let’s again assume the
simplest case of a first-order, single-variable equation:

‘;—’t‘ = f(x1). (8.86)
We are also, as usual, given an initial condition at some time t, and, as in the
previous section, let us solve the equation over an interval of time from ¢ to
some later time t + H.

We start by calculating a solution using the modified midpoint method and,
in the first instance, we will use just a single step fot the whole solution, from ¢
to t + H (or you can think of it as two half-steps—see Eq. (8.81)). In other words
our step size for the modified midpoint method, which we’ll call ;, will just
be equal to H. This gives an estimate of the value of x(t + H), which we will
denote Ry,. (The R is for “Richardson extrapolation.”) If H is a large interval
of time then R; ; will be a rather crude estimate, but that need not WOITY Uus, as
we'll see.

Once we have calculated R;,;, we go back to the start at time ¢ again and
repeat our calculation, again using the modified midpoint method, but this
time with two steps of size /i = JH. This gives us a second estimate of x(t +
H), which we’ll call R ;.

We showed in the previous section that the total error on the modified mid-
point method is an even function of the step size, so it follows that

x(t+ H) = Ry1 + c1h5 + O(H3), (8.87)

377



CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

where ¢; is an unknown constant. Similarly
x(t+ H) = Ryy +cihf +O(h) = Ryq + deihd + O(h3), (8.88)

where we have used the fact that /iy = 2/1,. Since Eqs. (8.87) and (8.88) are both
expressions for the same quantity we can equate them and, after rearranging,
we find that

cih3 = 3(Ry1 — Ryy). (8.89)

Substituting this back into Eq. (8.87), we get
X(t + H) =Ry + %(RZ,I — Rl,l) + O(hg) (8.90)

In other words, we have found a new estimate of x(t + H) which is more ac-
curate than either of the estimates that went into it—it has an error of order h#,
two orders in /i better than the basic leapfrog method and as good as the fourth-
order Runge-Kutta method (which, when you add up errors over more than
one step, is accurate to order /1 and carries an h* error). Let us call this new
estimate Ry5:

Ra2 = Ra1 + §(Ra1 — Ryp). (8.91)

We can take this approach further. If we increase the number of steps to
three, with step size /1 = {H, and solve from ¢ to t + H again we get a new
estimate Rj3;. Then, following the same line of argument as above, we can
calculate a further estimate

R3z = R31 + 2(Ra1 — Raa), (8.92)
which has an error of order /5. This allows us to write
x(t+ H) = R32 + coh§ + O(HS), (8.93)
where c; is another constant. Combining Egs. (8.90) and (8.91), we also have
x(t+ H) = Ry + coh3 + O(hS) = Rz + Sl + O(HS), (8.94)

where we have made use of the fact that i, = 3h;. Equating this result
with (8.93) and rearranging gives

c2hy = ¥(R3z2 — Rp2), (8.95)
and substituting this into Eq. (8.93) gives

x(t+ H) = Ra3 + O(KS), (8.96)

378




8.5 | OTHER METHODS FOR DIFFERENTIAL EQUATIONS

where

R3z = R3y + é—g(R&z - RZ,Z)- 8.97)
Now our error is of order h®, and we've taken only three modified midpoint
steps!

The power of this method lies in the way it cancels out the error terms
to higher and higher orders on successive steps, along with the fact that the
modified midpoint method has only even-order error terms, which means that
every time we cancel out another term we gain two extra orders of accuracy
in h.

We can take this process as far as we like. Each time around, we solve
our differential equation again from ¢ to ¢ + H using the modified midpoint
method, but with one more step than last time. Suppose we denote the current
number of steps by 1 and our modified midpoint estimate estimate of x(t + H )
by Ry,1. Then we can use the method above to cancel error terms and arrive at
a series of further estimates Ry2, Ry 3, and so on, where Ry, m carries an error of
order h?™:

X(t+ H) = Rum + c,,h2" + O (h2"+2), (8.98)

where ¢, is an unknown constant. The corresponding estimate R,-1,» made
with one less step satisfies

x(t+ H) = Rycym + 2", + O(h2"+?). (8.99)
Buth, = H/nand h,_; = H/(n-1),s0
n ’
hy1 = — hy. (8.100)
Substituting this into (8.99), equating with (8.98), and rearranging, we then
find that
c hzm _ Rn,m - Rn—l,m (8101)

m'tn [n/(n — 1)]2m -1
And putting this in Eq. (8.98) gives us a new estimate of x(t + H) two orders
of h more accurate:

X(t+ H) = Rymia1 + O(H2"+2), (8.102)
where R R
nm — Np—1m
Rn,m+1 = Rn,m + [n/(n — 1)]2”1 _1 (8.103)

Equation (8.103) is the fundamental equation of Richardson extrapolation,
and the heart of the Bulirsch-Stoer solution method. It allows us to calculate

379



CHAPTER 8 I ORDINARY DIFFERENTIAL EQUATIONS

remarkably accurate estimates of x(t + H) while only using a very few steps
of the modified midpoint method.
A diagram may help to make the structure of the method clearer:

n=1: R1,1
n=2: R2,1 — R2,2
n=23: Ria; — R3p = Ra3
n==4: R4y — Ry2 — Ry3 — Ryy
~— ~ ~ -
Modified Richardson extrapolation
midpoint

For each value of n we calculate a basic modified midpoint estimate R,,; with
n steps, and then a series of further extrapolation estimates, working along
a row of the diagram. Each extrapolation estimate depends on two previous
estimates, as indicated by the arrows, and the last estimate in each row is the
highest-order estimate for that value of 7.

The method also gives us estimates of the error each time around. The
quantity c,, k3" in Eq. (8.101) is precisely the (leading-order) error on the cur-
rent estimate of x(t + H). The Bulirsch-Stoer method involves increasing the
number of steps 1 until the error on our best estimate of x(t + H) is as small
as we want it to be. As with the adaptive Runge-Kutta method of Section 8.4,
we typically specify the accuracy we want in terms of the error per unit time 4,
in which case the required accuracy for a solution over the interval H is Hd.
When the error falls below this value, the calculation is finished. Thus the
Bulirsch-Stoer method is actually an adaptive method—it performs only as
many steps as are needed to give us the accuracy we require.?

If you previously read Section 5.4, on the technique for calculating integrals
known as Romberg integration, the diagram above may look familiar—it is
similar to the one on page 161 in that section. This is no coincidence. Romberg
integration and the Bulirsch-Stoer method are both applications of the same
idea of Richardson extrapolation, to two different problems, and Eq. (8.103)

3Actually it goes one step further than we really need, since the error calculated in Eq. (8.101)
is the error on the previous estimate R, ,, and not the error on the new estimate Ry 4. So, just as
with the local extrapolation method discussed at the end of Section 8.4, the results will usually be
a little more accurate than our target accuracy.

380




8.5 | OTHER METHODS FOR DIFFERENTIAL EQUATIONS

for the Bulirsch-Stoer method embodies essentially the same idea as Eq. (5.51)
for Romberg integration, though there are some differences. In particular, in
Romberg integration we doubled the number of steps each time around, in-
stead of just increasing it by one. This is a convenient choice when doing in-
tegrals because it gives us “nested” sample points that improve the speed of
the calculations by allowing us to reuse previous results, as discussed in Sec-
tion 5.3. There is no equivalent speed improvement to be had when solving
differential equations, which is a shame in a sense, but does leave us free to
choose the number of steps however we like. Various choices have been in-
vestigated and the results seem to indicate that the simple choice used here, of
increasing 1 by one each time around, is a good one—better in most cases than
doubling the value of n.

There are some limitations to the Bulirsch-Stoer method. One is that it
only calculates a really accurate answer for the final value x(¢ + H). At all the
intermediate points we only get the raw midpoint-method estimates, which
are not particularly accurate. (They carry an error of order 12.)

Furthermore, we are, in effect, calculating the terms in a series expansion
of x(t + H) in powers of I and the method is only worthwhile if the series
converges reasonably quickly. If you need hundreds or thousands of terms to
get a good answer, then the Bulirsch-Stoer method is not a good choice. This
means in practice that the interval H over which we are solving has to be kept
reasonably small. Practical experience suggests that the method works best if
the number of modified midpoint steps is never greater than about eight or
ten, which limits the size of the time interval H to re}latively modest values.

Both of these problems can be overcome with the same simple technique:
if we want a solution from say t = a to t = b, we divide that time into some
number N of smaller intervals of size H = (b — a)/N and apply the Bulirsch—
Stoer method separately to each one in turn. We should choose N large enough
that we get a complete picture of the solution without having to rely on the
modified midpoint estimates in the interior of the intervals. And H should be
small enough that in any one interval the number of modified midpoint steps
needed to reach the target accuracy is never too large.

The complete Bulirsch-Stoer method is then as follows. Let & be the de-
sired accuracy of your solution per unit time. Divide the entire solution into
N equal intervals of length H each and apply the following steps to solve your
differential equation in each one in turn:

1. Set n = 1 and use the modified midpoint method of Section 8.5.4 to cal-
culate an estimate R, ; of the solution from # to f + H using just one step.

381



—HAPTER 8 I ORDINARY DIFFERENTIAL EQUATIONS

2. Increase n by one and calculate a new modified midpoint estimate R,

with that many steps.

3. Use Eq. (8.103) to calculate further estimates R,,...R,,—a complete

row in the diagram on page 380.
4. After calculating the whole row, compare the error given by Eq. (8.101)
with the target accuracy HJ. If the error is larger than the target accuracy,
go back to step 2 again. Otherwise, move on to the next time interval H.
When the entire solution has been covered in this way, the calculation ends.

The Bulirsch-Stoer method can easily be extended to the solution of simul-
taneous differential equations by replacing the single dependent variable x
with a vector r of two or more variables, as in Section 8.2. Then the esti-
mates R, also become vectors R, ,, but the equations for the method remain
otherwise the same. We can also apply the Bulirsch~-Stoer method to second- or
higher-order differential equations by first transforming those equations into
first-order ones, as described in Section 8.3.

Although it is somewhat more complicated to program than the Runge-
Kutta method, the Bulirsch-Stoer method can work significantly better even
than the adaptive version of Runge-Kutta, giving more accurate solutions with
less work. Because, as we have said, it relies on a series expansion, the method
is mainly useful for equations whose solutions are relatively smooth, so that
expansions work well. Differential equations with pathological behaviors—
large fluctuations, divergences, and so forth—are not suitable candidates. If
you have a differential equation that displays such behaviors then the adap-
tive Runge-Kutta method of Section 8.4 is a better choice. But in cases where
it is applicable, the Bulirsch~Stoer method is considered by many to be the
best method available for solving ordinary differential equations, the king of
differential equation solvers.

EXAMPLE 8.7: BULIRSCH-STOER METHOD FOR THE NONLINEAR PENDULUM

Let us return to the nonlinear pendulum, which we examined previously in
Example 8.6 and Section 8.4. The equations of motion were given in Egs. (8.45)
and (8.46), which we repeat here:

de dw g .
Let us solve these equations for the case of a pendulum with an arm ¢ = 10cm
long, initially at rest with § = 179°, i.e., pointing almost, but not quite, ver-
tically upward. (These are the same conditions as in Exercise 8.4.) Here is a

32




8.5 | OTHER METHODS FOR DIFFERENTIAL EQUATIONS

complete program to solve for the motion of the pendulum using the Bulirsch—
Stoer method:

from math import sin,pi File: bulirsch.py
from numpy import empty,array,arange
from pylab import plot,show

g =9.81

1=0.1

theta0 = 179%pi/180

a=20.0

b =10.0

N = 100 # Number of "big steps"

H = (b-a)/N # Size of "big steps"

delta = le-8 # Required position accuracy per unit time
def f(r):

theta = r(0]

omega = r[1]

ftheta = omega

fomega = -(g/1)*sin(theta)

return array([ftheta,fomega],float)

tpoints = arange(a,b,H)
thetapoints = []
r = array([theta0,0.0],float)

# Do the "big steps" of size H
for t in tpoints:

thetapoints.append(r[0])

# Do one modified midpoint step of size H
# to get things started

n=1

rl = r + 0.5%xH*£(r)

r2 = r + H*f(rl)

# The array Rl stores the first row of the

# extrapolation table, which contains only the single
# modified midpoint estimate of the solution at the
# end of the interval

Rl = empty([1,2],float)

R1[0] = 0.5%(rl1 + r2 + 0.5%xH*f(r2))

383



CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

# Now increase n until the required accuracy is reached
error = 2*Hxdelta
while error>H*delta:

n +=1
h = H/n

# Modified midpoint method
rl = r + 0.5%h*f(r)
r2 = r + h*f(rl)
for i in range(n-1):
rl += h*f(r2)
r2 += h*f(r1)

# Calculate extrapolation estimates. Arrays R1 and R2

# hold the two most-recent lines of the table

R2 = R1

Rl = empty([n,2],float)

R1[0] = 0.5*%(r1l + r2 + 0.5%h*f(r2))

for m in range(i,n):
epsilon = (R1[m-1]-R2[m-1]1)/((n/(n-1))**(2*m)-1)
Ri[m] = R1[m-1] + epsilon

error = abs(epsilon[0])

# Set r equal to the most accurate estimate we have,
# before moving on to the next big step
r = Ri[n-1]

# Plot the results
plot(tpoints,thetapoints)
plot(tpoints,thetapoints,"b.")
show ()

There are a couple of points worth noting about this program. Notice, for
instance, how we gave the variable error an initial value of 2HJ, thus ensuring
that we go around the while loop at least once. Notice also how we have used
the two arrays R1 and R2 to store the most recent two rows of extrapolation
estimates R, . Since the calculation of each row requires only the values in
the current and previous rows, and since, ultimately, we are only interested in
the final value of the final row, there is no need to retain more than two rows
of estimates at any time. The rest can be safely discarded.

384




8.5 | OTHER METHODS FOR DIFFERENTIAL EQUATIONS

If we run the program it produces a solution essentially identical to our pre-
vious solution of the same problem using the adaptive Runge-Kutta method,
Fig. 8.8. The real difference between the two methods lies in the time it takes
them to reach a solution. The Bulirsch-Stoer method in this case takes about
3800 modified midpoint steps in total (including the steps performed for each
individual value of 1). The Runge-Kutta method takes about 4200 steps to cal-
culate a solution to the same accuracy, which at first glance doesn’t seem very
different from 3800. But a Runge-Kutta step takes more computer time than a
modified midpoint step, requiring four evaluations of the function f where the
modified midpoint method requires only two. This means that the total num-
ber of operations for the Runge-Kutta solution is around 16800, compared
with only about 7600 for the Bulirsch-Stoer solution.

The Bulirsch-Stoer method does require us to do some additional work to
perform the Richardson extrapolation, but the computational effort involved
is typically small by comparison with the rest of the calculation. So to a good
approximation we expect to arrive at a solution about twice as fast with the
Bulirsch-Stoer method as with adaptive Runge-Kutta. The running time of
neither calculation was very great in this case—they both finished in seconds—
but for a larger calculation, something more taxing than this modest example,
an improvement of a factor of two could make a great deal of difference. The
difference between a program that runs in a week and one that runs in two
weeks is significant. Moreover, the advantages of the Bulirsch-Stoer method
become more pronounced if we demand a more accurate solution by reducing
the value of the accuracy parameter §. This makes the method particularly
attractive for cases where solutions of very high precision are required.

Before ending this section, we should mention that the method described
here is not exactly the original Bulirsch-Stoer method as invented by Bulirsch
and Stoer. There are two ways in which it differs from the original. First, the
original method used a number 1 of modified midpoint steps that increased
exponentially, doubling on successive steps rather than increasing by one. As
mentioned above, however, the current belief (based primarily on accumulated
experience rather than any rigorous result) is that the method is more efficient
when 1 just goes up by one each time. Second, the original Bulirsch-Stoer
method used a different extrapolation scheme, based on rational approximants

"Specifically, it used a sequence of values n — 2, 3, 4, 6, 8, 12, 16... so that each value was
twice the next-to-last one.

385



HAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

rather than the Richardson extrapolation described in this section, which uses
polynomial approximants. It was originally thought that rational approxi-
mants gave more accurate results, but again experience has shown this not
to be the case, and current thought favors the polynomial scheme.

Exercise 8.13: Planetary orbits

This exercise asks you to calculate the orbits of two of the planets using the Bulirsch-
Stoer method. The method gives results significantly more accurate than the Verlet
method used to calculate the Earth’s orbit in Exercise 8.12.

The equations of motion for the position x, y of a planet in its orbital plane are the
same as those for any orbiting body and are derived in Exercise 8.10 on page 361:

dx x d’y y

—C—l—ti=—GMr—3, W~_GM1‘-3,
where G = 6.6738 x 107! m? kg~! s72 is Newton's gravitational constant, M = 1.9891 x
10% kg is the mass of the Sun, and r = /xZ + 2.

Let us first solve these equations for the orbit of the Earth, duplicating the results of
Exercise 8.12, though with greater accuracy. The Earth’s orbit is not perfectly circular,
but rather slightly elliptical. When it is at its closest approach to the Sun, its perihelion,
it is moving precisely tangentially (i.e., perpendicular to the line between itself and
the Sun) and it has distance 1.4710 x 10! m from the Sun and linear velocity 3.0287 x
10*ms™L

a) Write a program, or modify the one from Example 8.7, to calculate the orbit of
the Earth using the Bulirsch-Stoer method to a positional accuracy of 1km per
year. Divide the orbit into intervals of length H = 1 week and then calculate the
solution for each interval using the combined modified midpoint/Richardson
extrapolation method described in this section. Make a plot of the orbit, showing
at least one complete revolution about the Sun.

b) Modify your program to calculate the orbit of the dwarf planet Pluto. The dis-
tance between the Sun and Pluto at perihelion is 4.4368 x 10'> m and the linear
velocity is 6.1218 x 10* ms™!. Choose a suitable value for H to make your calcu-
lation run in reasonable time, while once again giving a solution accurate to 1 km

per year.
You should find that the orbit of Pluto is significantly elliptical—much more

so than the orbit of the Earth. Pluto is a Kuiper belt object, similar to a comet, and

(unlike true planets) it’s typical for such objects to have quite elliptical orbits.




8.5 | OTHER METHODS FOR DIFFERENTIAL EQUATIONS

8.5.6 INTERVAL SIZE FOR THE BULIRSCH-STOER METHOD

As we have said, the Bulirsch-Stoer method works best if we keep the num-
ber n of modified midpoint steps small, rising to at most eight or ten on any
round of the calculation. To ensure this we must choose a suitable value of H,
small enough that the extrapolation process converges to the required accu-
racy quickly. In Example 8.7 we set H manually and this works fine for simple
problems. One can just use trial and error to find a suitable value.

For large-scale calculations, however, it’s better to have the value of H cho-
sen automatically by the computer. It saves time and ensures that the value
used is always a good one. There are various adaptive schemes one can use to
calculate a good H, but here’s one that is robust and relatively simple.

Suppose, as previously, that we are solving our differential equation from
time t = a tot = b and let us choose some initial number of intervals N into
which we divide this time, so that the length of each intervalis H = (b—a)/N.
Normally the initial value of N will be a small number, like four, or two, or
even just one.

Now we carry out the operations of the Bulirsch-Stoer method on each of
the intervals in turn as normal, subdividing each one into n modified midpoint
steps and then extrapolating the results as we increase the value of n. For each
value of n we calculate the error, Eq. (8.101), on our results and if this error
meets our required accuracy level then the calculation for the current interval
is finished.

However, if n reaches a predetermined maximum value—typically around
eight—and we have not yet met our accuracy goal, thep we abandon the cal-
culation and instead subdivide the current time interval of size H into two
smaller intervals of size 1 H each. Then we apply the Bulirsch-Stoer method to
each of these smaller intervals in tumn.

We continue this process as long as necessary, repeatedly subdividing in-
tervals until we reach the required accuracy. Any interval that fails to meet our
accuracy goal before the number of steps n reaches the allowed maximum, is
subdivided into two parts and the method applied to the parts separately.

Note that different intervals may be subdivided different numbers of times.
This means that the ultimate size of the intervals used for different parts of
the solution may not be the same. The division of the complete solution into
intervals might end up looking something like this:

| N T T A N T A N ! |
| | LR AL L T |

387




CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

In portions of the solution where a good result can be obtained with a larger
value of H the method will take advantage of that fact. In other portions,
where necessary, it will use a smaller value of H (as in the central portions
above). Exercises 8.17 and 8.18 give you an opportunity to try out this scheme.

8.6 BOUNDARY VALUE PROBLEMS

All the examples we have considered so far in this chapter have been initial
value problems, meaning that we are solving differential equations given the
initial values of the variables. This is the most common form of differential
equation problem encountered in physics, but it is not the only one. There are
also boundary value problems.

Consider, for instance, the differential equation governing the height above
the ground of a ball thrown in the air:

d2x
dt?
where g is the acceleration due to gravity and we’re ignoring friction. To fix
the solution of this equation we could specify initial conditions, two initial

=g (8.105)

conditions being required for a second-order equation. We could, for instance,
specify the initial height of the ball and its initial upward velocity. However
there is another possibility: we could specify our two conditions by giving one
initial condition and one ending condition. We could, for instance, specify that
the ball has height x = 0 at t = 0 and that x = 0 again at some later time
t = t;. In other words, we are specifying the time at which the ball is thrown
and the time at which it lands. Then our goal would be to find the solution that
satisfies these conditions. This problem might arise for instance if we wished
to calculate the trajectory of a projectile necessary to make it land at a specific
point, which is a classic problem in artillery fire.

Problems of this kind are called boundary value problems. They are some-
what harder to solve computationally than the initial value problems we have
looked at previously, but a solution can be achieved by combining two tech-
niques that we have already seen, as follows.

8.6.1 THE SHOOTING METHOD

A fundamental technique for solving boundary value problems is the shoot-
ing method. The shooting method is a trial-and-error method that searches for
the correct values of the initial conditions that match a given set of boundary

388




8.6 | BOUNDARY VALUE PROBLEMS
200 -
150 -
] 2
100 -} 3
5 ]
= 1
= 1
5!-:’ 50 7
0 : { : { : ! : | ¢
. 2 4 6 8 10
-50 _: Time ¢

Figure 8.11: The shooting method. The shooting method allows us to match boundary
conditions at the beginning and end of a solution. In this example we are solving for
the trajectory of a thrown ball and require that its height x be zero—i.e., that it lands—at
time ¢ = 10. The shooting method involves making a guess as to the initial conditions
that will achieve this. In this example, we undershoot our target (represented by the
dot on the right) on our first guess (trajectory 1). On the second guess we overshoot.
On the third we are closer, but still not perfect.

conditions, in effect turning the calculation back into an initial value problem.
Consider the problem of the thrown ball above. In this problem we are given
the initial position but not the velocity of the ball. All we know is that the ball
lands a certain time later; the velocity is whatever it has to be to make this
happen.

So we start by guessing a value for the initial upward velocity. Using this
value we solve the differential equation and follow the ball until the time ¢,
at which it is supposed to land and we ask whether it had height zero at that
time—see Fig. 8.11. Probably it did not. Probably we overshot or undershot.
In that case we change our guess for the initial velocity and try again.

The question is how exactly we should modify our guesses to converge
to the correct value for the initial velocity. To understand how to do this, let
us look at the problem in a slightly different way. In principle there is some
function x = f(v) which gives the height x of the ball at time #; as a function
of the initial vertical velocity v. We don’t know what this function is, but we
can calculate it for any given value of v by solving the differential equation

389




CHAPTER § | ORDINARY DIFFERENTIAL EQUATIONS

with that initial velocity. Our goal in solving the boundary value problem
is to find the value of v that makes the function zero. That is, we want to
solve the equation f(v) = 0. But this is simply a matter of finding the root of
the function f(v) and we already know how to do that. We saw a number of
methods for finding roots in Section 6.3, including binary search and the secant
method. Either of these methods would work for the current problem.

So the shooting method involves using one of the standard methods for
solving differential equations, such as the fourth-order Runge-Kutta method,
to calculate the value of the function f(v), which relates the unknown initial
conditions to the final boundary condition(s). Then we use a root finding
method such as binary search to find the value of this function that matches
the given value of the boundary condition(s).

EXAMPLE 8.8: VERTICAL POSITION OF A THROWN BALL

Let us solve the problem above with the thrown ball for the case where the
ball lands back at x = 0 after t = 10 seconds. The first step, as is normal for
second-order equations, is to convert Eq. (8.105) into two first-order equations:

dx dy

=Y il (8.106)
We will solve these using fourth-order Runge-Kutta, then perform a binary
search to find the value of the initial velocity that matches the boundary con-

ditions. Here is a program to accomplish the calculation:

File: throw.py from numpy import array,arange
g =9.81 # Acceleration due to gravity
a=20.0 # Initial time
b =10.0 # Final time
N = 1000 # Number of Runge-Kutta steps
h = (b-a)/N # Size of Runge-Kutta steps

target = le-10 # Target accuracy for binary search

def £(1):
x = r[0]
y = r[1]
fx=y
fy = -g

return array([fx,fy],float)

390




8.6 | BOUNDARY VALUE PROBLEMS

# Function to solve the equation and calculate the final height
def height(v):
r = array([0.0,v],float)
for t in arange(a,b,h):
k1 = hxf(r)

k2 = h*f(r+0.5%kl)
k3 = h*f(r+0.5%k2)
k4 = hxf(r+k3)

r += (k1+2*k2+2%k3+k4)/6
return r[0]

# Main program performs a binary search

vl = 0.01

v2 = 1000.0

h1l = height(v1)
h2 = height(v2)

while abs(h2-hl)>target:
vp = (vi+v2)/2
hp = height(vp)

if hixhp>0:
vl = vp
hil = hp
else:
vZ2 = vp
h2 = hp

v = (vi+v2)/2
print("The required initial velocity is",v,"m/s")

One point to notice about this program is that the condition for the binary
search to stop is a condition on the accuracy of the height of the ball at the
final time ¢ = 10, not a condition on the initial velocity. In most cases we care
about matching the boundary conditions accurately, not calculating the initial
conditions accurately.

If we run the program it prints the following:

The required initial velocity is 49.05 m/s

In principle, we could now take this value and use it to solve the differential
equation once again, to compute the actual trajectory that the ball follows, ver-
ifying in the process that indeed it lands back on the ground at the allotted
time ¢ = 10.

391



HAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

8.6.2 THE RELAXATION METHOD

There is another method for solving boundary value problems that finds some
use in physics, the relaxation method.®> This method involves defining a shape
for the entire solution, one that matches the boundary conditions but may
not be a correct solution of the differential equation in the region between the
boundaries. Then one successively modifies this shape to bring it closer and
closer to a solution of the differential equation, while making sure that it con-
tinues to satisfy the boundary conditions.

In a way, the relaxation method is the opposite of the shooting method.
The shooting method starts with a correct solution to the differential equation
that may not match the boundary conditions and modifies it until it does. The
relaxation method starts with a solution that matches the boundary conditions,
but may not be a correct solution to the equation.

In fact the relaxation method is most often used not for solving boundary
value problems for ordinary differential equations, but for partial differential
equations, and so we will delay our discussion of it until the next chapter,
which focuses on partial differential equations. Exercise 9.7 at the end of that
chapter gives you an opportunity to apply the relaxation method to an ordi-
nary differential equation problem. If you do that exercise you will see that the
method is essentially the same for ordinary differential equations as it is for
partial ones.

8.6.3 EIGENVALUE PROBLEMS

A special type of boundary value problem arises when the equation (or equa-
tions) being solved are linear and homogeneous, meaning that every term
in the equation is linear in the dependent variable. A good example is the
Schrédinger equation. For a single particle of mass m in one dimension, the
time-independent Schrodinger equation is

o TR VE)P() = Ey(x), (8107)

where §(x) is the wavefunction, V(x) is the potential energy at position x, and
E is the total energy of the particle, potential plus kinetic. Note how every term

>The relaxation method has the same name as the method for solving nonlinear equations
introduced in Section 6.3.1, which is no coincidence. The two are in fact the same method. The
only difference is that in Section 6.3.1 we applied the relaxation method to solutions for single
variables, whereas we are solving for entire functions in the case of differential equations.

N




8.6 | BOUNDARY VALUE PROBLEMS

in the equation is linear in .
Consider the problem of a particle in a square potential well with infinitely
high walls. That is,

0 forO< x <L,
00 elsewhere,

V(x) = { (8.108)

where L is the width of the well. This problem is solvable analytically, but it is
instructive to see how we would solve it numerically as well.

The probability of finding the particle in the region with V(x) = o is zero,
so the wavefunction has to go to zero at x = 0 and x = L. Thus this appears
to be a standard boundary-value problem which we could solve, for instance,
using the shooting method. Since the differential equation is second-order, we
would start by turning it into two first-order ones, thus:

j—f =¢, j—f = %[V(x) — E]y. (8.109)
To calculate a solution we need two initial conditions, one for each of the vari-
ables i and ¢. We know the value of ¢ is zero at x = 0 but we don’t know
the value of ¢ = di/dx, so we guess an initial value then calculate the so-
lution from x = 0 to x = L. Figure 8.12 shows an example calculated using
fourth-order Runge-Kutta (the solid curve in the figure).

In principle the solution should equal zero again at x = L, but in this case
it doesn’t. Based on our experience with the shooting method in Section 8.6.1,
we might guess that we can fix this problem by changing the initial condition
on the derivative ¢ = di/dx. Using a root-finding method such as binary
search we should be able to find the value of the derivative that makes the
wavefunction exactly zero at x = L. Unfortunately in the present case this will
not work.

To see why, consider what happens when we change the initial condition
for our solution. If, for example, we double the initial value of dip/dx, that
doubles the value of the wavefunction close to x = 0, as shown by the dashed
line in Fig. 8.12. But the Schrédinger equation is a linear equation, meaning
that if 9(x) is a solution then so also is 2¢(x). Thus if we double the initial
values of P(x) the corresponding solution to the Schrodinger equation is just
the same solution that we had before, but times two. This means that if the
solution previously failed to pass through zero at x = L, it will still fail to pass
through zero. And indeed no amount of adjustment of the initial condition will
ever make the solution pass through zero. The initial condition only affects the
overall magnitude of the solution but does not change its essential shape.

393




CHAPTER 8

394

ORDINARY DIFFERENTIAL EQUATIONS

x=0 x=L

Figure 8.12: Solution of the Schrodinger equation in a square well. In attempting to
solve the Schrédinger equation in a square well using the shooting method the initial
value of the wavefunction at position x = 0 is known to be zero but we must guess a
value for the initial gradient. The result will almost certainly be a wavefunction that
fails to correctly return to zero at the far wall of the well, at x = L (solid curve). Chang-
ing our guess for the initial slope does not help because the equation is linear, meaning
the solution merely gets rescaled by a constant (dashed curve). If the solution did not
previously pass through zero at x = L then it still won't, and indeed will not for any
choice of initial conditions.

The fundamental issue underlying our problem in this case is that there
simply is no solution to the equation that is zero at both x = 0 and x = L.
There is no solution that satisfies the boundary conditions. In fact, there are in
this case solutions to the Schrédinger equation only for certain special values of
the energy parameter E, the so-called allowed values or eigenvalues; for other
values no solutions exist. It is precisely because of this phenomenon that the
energies of quantum particles are quantized, meaning that there are discrete
allowed energy levels and all other energies are forbidden.

So how do we find the allowed energies and solve the Schrodinger equa-
tion? One way to do it is to use a method akin to the shooting method, but
instead of varying the initial conditions we vary the energy E. For a particular
set of initial conditions, we vary E to find the value for which ¢ = 0 at x = L.
That value is an energy eigenstate of the system, an allowed quantum energy,
and the corresponding solution to the Schrédinger equation is the wavefunc-
tion in that eigenstate. We can think of the solution to the Schrédinger equation




8.6 | BOUNDARY VALUE PROBLEMS

as giving us a function f(E) equal to the value of the wavefunction at x = L
and we want to find the value of E that makes this function zero. That is, we
want to find a root of the function. As with the shooting method, we can find
that root using any of the methods we learned about in Section 6.3, such as
binary search or the secant method.

And what about the unknown boundary condition on ¢ = dy/dx? How
is that to be fixed in this scheme? The answer is that it doesn’t matter. Since,
as we have said, the only effect of changing this boundary condition is to mul-
tiply the whole wavefunction by a constant, we can give it any value we like.
The end result will be a solution for the wavefunction that is correct except
for a possible overall multiplying factor. Traditionally this factor is fixed by
requiring that the wavefunction be normalized so that JIp(x)Pdx = 1. If we
need a wavefunction normalized in this fashion, then we can normalize it af-
ter the rest of the solution has been computed by calculating the value of the
integral [ |p(x)[* dx using any integration method we like, and then dividing
the wavefunction throughout by the square root of that value.

EXAMPLE 8.9: GROUND STATE ENERGY IN A SQUARE WELL

Let us calculate the ground state energy of an electron in a square potential
well with infinitely high walls separated by a distance L equal to the Bohr
radius ag = 5.292 x 107" m. Here's a program to do the calculation using the
secant method:

from numpy import array,arange File: squarewell.py

# Constants

m = 9.1094e-31 # Mass of electron

hbar = 1.0546e-34 # Planck’s constant over 2%pi
e = 1.6022e-19 # Electron charge

L = 5.2918e-11 # Bohr radius

N = 1000

h=1L/N

# Potential function
def V(x):
return 0.0

def f(r,x,E):
psi = r[0]
phi = r[1]

395



CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

fpsi = phi
fphi = (2¥m/hbar#**2)*(V(x)-E)*psi
return array([fpsi,fphi],float)

# Calculate the wavefunction for a particular energy
def solve(E):

psi = 0.0

phi = 1.0

r = array([psi,phil,float)

for x in arange(O,L,h):
k1l = h*f(r,x,E)

k2 = h#*f(r+0.5*k1,x+0.5%h,E)
k3 = h#*f(r+0.5*k2,x+0.5%h,E)
k4 = h#*f(r+k3,x+h,E)

r += (k1+2*k2+2*k3+k4)/6
return r[0]

# Main program to find the energy using the secant method

El1 = 0.0
E2 = e
psi2 = solve(El)

target = /1000
while abs(E1-E2)>target:
psil,psi2 = psi2,solve(E2)
E1,E2 = E2,E2-psi2*(E2-E1)/(psi2-psil)

print("E =",E2/e,"eV")
If we run the program, it prints the energy of the ground state thus:
E = 134.286371694 eV

which is indeed the correct answer. Note that the function V(x) does nothing
in this program—since the potential everywhere in the well is zero, it plays no
role in the calculation. However, by including the function in the program we
make it easier to solve other, less trivial potential well problems. For instance,
suppose the potential inside the well is not zero but varies as

V(x) = Vo% (% - 1), (8.110)

396




8.6 | BOUNDARY VALUE PROBLEMS

where Vy = 100eV. It's a simple matter to solve for the ground-state energy of
this problem also. We have only to change the function V(x), thus:

VO = 100%*e
def V(x):
return VO*(x/L)*(x/L-1)

Then we run the program again and this time find that the ground state energy
is

E = 112.540107208 eV

Though the original square well problem is relatively easy to solve analytically,
this second version of the problem with a varying potential would be much
harder, and yet a solution is achieved easily using the computer.

Exercise 8.14: Quantum oscillators

Consider the one-dimensional, time-independent Schrédinger equation in a harmonic
(i.e., quadratic) potential V(x) = Vpx?/a?, where Vj and a are constants.

a) Write down the Schrodinger equation for this problem and convert it from a
second-order equation to two first-order ones, as in Example 8.9. Write a pro-
gram, or modify the one from Example 8.9, to find the energies of the ground
state and the first two excited states for these equations when m is the electron
mass, Vp = 50eV, and a = 107" m. Note that in theory the wavefunction goes
all the way out to x = =00, but you can get gooq answers by using a large but
finite interval. Try using x = —10a to +10a, with the wavefunction ¢ = 0 at both
boundaries. (In effect, you are putting the harmonic oscillator in a box with im-
penetrable walls.) The wavefunction is real everywhere, so you don’t need to use
complex variables, and you can use evenly spaced points for the solution—there
is no need to use an adaptive method for this problem.

The quantum harmonic oscillator is known to have energy states that are
equally spaced. Check that this is true, to the precision of your calculation, for
your answers. (Hint: The ground state has energy in the range 100 to 200eV.)

b) Now modify your program to calculate the same three energies for the anhar-
monic oscillator with V(x) = Vpx*/a*, with the same parameter values.

¢) Modify your program further to calculate the properly normalized wavefunc-
tions of the anharmonic oscillator for the three states and make a plot of them,
all on the same axes, as a function of x over a modest range near the origin—say
x = —-batox =5a.

To normalize the wavefunctions you will have to calculate the value of the
integral [ |(x){*dx and then rescale y appropriately to ensure that the area

397



CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

under the square of each of the wavefunctions is 1. Either the trapezoidal rule
or Simpson’s rule will give you a reasonable value for the integral. Note, how-
ever, that you may find a few very large values at the end of the array holding
the wavefunction. Where do these large values come from? Are they real, or
spurious?

One simple way to deal with the large values is to make use of the fact that the
system is symmetric about its midpoint and calculate the integral of the wave-
function over only the left-hand half of the system, then double the result. This
neatly misses out the large values.

The methods described in this section allow us to calculate solutions of the
Schrodinger equation in one dimension, but the real world, of course, is three-
dimensional. In three dimensions the Schrédinger equation becomes a partial
differential equation, whose solution requires a different set of techniques. Par-
tial differential equations are the topic of the next chapter.

FURTHER EXERCISES

8.15 The double pendulum: If you did Exercise 8.4 you will have created a program
to calculate the movement of a nonlinear pendulum. Although it is nonlinear, the non-
linear pendulum’s movement is nonetheless perfectly regular and periodic—there are
no surprises. A double pendulum, on the other hand, is completely the opposite—chaotic
and unpredictable. A double pendulum consists of a normal pendulum with another
pendulum hanging from its end. For simplicity let us ignore friction, and assume that
both pendulums have bobs of the same mass m and massless arms of the same length £.
Thus the setup looks like this:

Pivot

398




EXERCISES

The position of the arms at any moment in time is uniquely specified by the two angles
6, and 6,. The equations of motion for the angles are most easily derived using the
Lagrangian formalism, as follows.

The heights of the two bobs, measured from the level of the pivot are
h = —fcosf, hy = —£€(cos By + cos 6;),
so the potential energy of the system is
V = mghy + mghy = —mgf(2cos 6; + cos 62),

where g is the acceleration due to gravity. (The potential energy is negative because we
have chosen to measure it downwards from the level of the pivot.)

The velocities of the two bobs are given by
U = 891, U% = [0% + 9% + 29192 COS(91 - 92)],

where 6 means the derivative of 6 with respect to time ¢. (If you don’t see where the
second velocity equation comes from, it’s a good exercise to derive it for yourself from
the geometry of the pendulum.) Then the total kinetic energy is

T = Imv} + Lmv} = me?[02 + 163 + 6,6, cos(6: — 6,)],

and the Lagrangian of the system is
L =T-V =m0+ 163+ 616, cos(6, — 62)] +mgl(2cos 6, + cosby).

Then the equations of motion are given by the Euler-Lagrange equations
L)z, 4y
de\ag, /)  96,"  dt\ a6, “’ 96, ’
which in this case give

26, + f, cos(61 — 6) + 02 sin(6; — 62) + 2% sinf; = 0,

b, + 6, cos(6; — 8,) — 62 sin(6; — 8,) + % sinf, =0,

where the mass m has canceled out.

These are second-order equations, but we can convert them into first-order ones by
the usual method, defining two new variables, w; and w», thus:

91 = w1, 92 = W».
In terms of these variables our equations of motion become
2t + wy COS(91 — 92) + w% Sil’l(91 - 92) + 2% sinf; = 0,

wy + wn COS(91 - 92) - wf sin(91 - 92) + % sinf, = 0.

399



CHAPTER 8 | ORDINARY DIFFERENTIAL EQUATIONS

Finally we have to rearrange these into the standard form of Eq. (8.29) with a single
derivative on the left-hand side of each one, which gives

_ wisin(26, — 26) + 2w sin(6; — 6,) + (g/¢) [sin(6) — 26,) + 3sin 6]
3 - cos(26, — 26,) !
o 4w} sin(8) — 6,) + wsin(20, — 26;) + 2(g/¢) [sin(26; — 0,) — sin 6,
2 3 — cos(26, — 26,) ’

(4']1=

(This last step is quite tricky and involves some trigonometric identities. If you have
not seen the derivation before, you may find it useful to go through it for yourself.)

These two equations, along with the equations §; = w; and 8, = cws, give us four
first-order equations which between them define the motion of the double pendulum.

a) Derive an expression for the total energy E = T + V of the system in terms of the
variables 6y, 8,, w,, and w,, plus the constants 8 ¢, and m.

b) Write a program using the fourth-order Runge-Kutta method to solve the equa-
tions of motion for the case where £ = 40 cm, with the initial conditions 0,=6, =
90° and w; = w, = 0. Use your program to calculate the total energy of the sys-
tem assuming that the mass of the bobs is 1 kg each, and make a graph of energy
as a function of time from ¢+ = 0 to ¢ = 100 seconds.

Because of energy conservation, the total energy should be constant over time
(actually it should be zero for these particular initial conditions), but you will find
that it is not perfectly constant because of the approximate nature of the solution
of the differential equations. Choose a suitable value of the step size h to ensure
that the variation in energy is less than 105 joules over the course of the calcula-
tion.

¢) Make a copy of your program and modify the copy to create a second program
that does not produce a graph, but instead makes an animation of the motion of
the double pendulum over time. At a minimum, the animation should show the
two arms and the two bobs.

Hint: As in Exercise 8.4 you will probably find the function rate useful in order
to make your program run at a steady speed. You will probably also find that the
value of I needed to get the required accuracy in your solution gives a frame-
rate much faster than any that can reasonably be displayed in your animation, so
you won't be able to display every time-step of the calculation in the animation.
Instead you will have to arrange the program so that it updates the animation
only once every several Runge-Kutta steps.

8.16 The three-body problem: If you mastered Exercise 8.10 on cometary orbits, here’s
a more challenging problem in celestial mechanics—and a classic in the field—the Hiree-
body problem.

Three stars, in otherwise empty space, are initially at rest, with the following masses
and positions, in arbitrary units:

400



Mass x y
Star1 | 150 1
Star2 | 200 -1 -2
Star3 | 250 -1 1
(All the z coordinates are zero, so the three stars lie in the xy plane.)
a) Show that the equation of motion governing the position r, of the first star is

d?r r — 1|
— = Gmy + Gms
de? rp,—r)?

and derive two similar equations for the positions r, and r; of the other two
stars. Then convert the three second-order equations into six equivalent first-
order equations, using the techniques you have learned.

b) Working in units where G = 1, write a program to solve your equations and hence
calculate the motion of the stars from ¢ = 0 to t = 2. Make a plot showing the
trails of all three stars (i.e., a graph of y against x for each star).

¢) Modify your program to make an animation of the motion on the screen from
t = 0tot = 10. You may wish to make the three stars different sizes or colors (or
both) so that you can tell which is which.

To do this calculation properly you will need to use an adaptive step size method, for
the same reasons as in Exercise 8.10—the stars move very rapidly when they are close
together and very slowly when they are far apart. An adaptive method is the only way
to get the accuracy you need in the fast-moving parts of the motion without wasting
hours uselessly calculating the slow parts with a tiny step size. Construct your program
so that it introduces an error of no more than 103 in the position of any star per unit
time.

Creating an animation with an adaptive step size can be challenging, since the steps
do not all correspond to the same amount of real time. The simplest thing to do is just to
ignore the varying step sizes and make an animation as if they were all equal, updating
the positions of the stars on the screen at every step or every several steps. This will
give you a reasonable visualization of the motion, but it will look a little odd because
the stars will slow down, rather than speed up, as they come close together, because the
adaptive calculation will automatically take more steps in this region.

A better solution is to vary the frame-rate of your animation so that the frames run
proportionally faster when h is smaller, meaning that the frame-rate needs to be equal
to C/h for some constant C. You can achieve this by using the rate function from the
visual package to set a different frame-rate on each step, equal to C/h. If you do this,
it’s a good idea to not let the value of /1 grow too large, or the animation will make some
large jumps that look uneven on the screen. Insert extra program lines to ensure that h
never exceeds a value /imax that you choose. Values for the constants of around C = 0.1
and Mpax = 103 seem to give reasonable results.

8.17 Cometary orbits and the Bulirsch-Stoer method: Repeat the calculation of the
cometary orbit in Exercise 8.10 (page 361) using the adaptive Bulirsch-Stoer method of

EXERCISES

401




CHAPTER 8 J ORDINARY DIFFERENTIAL EQUATIONS

Section 8.5.6 to calculate a solution accurate to 6 = 1 kilometer per year in the position
of the comet. Calculate the solution from t = 0 to t = 2 x 10°s, initially using just a
single time interval of size H = 2 x 10° s and allowing a maximum of n = 8 modified
midpoint steps before dividing the interval in half and trying again. Then these inter-
vals may be subdivided again, as described in Section 8.5.6, as many times as necessary
until the method converges in eight steps or less in each interval.

Make a plot of the orbit (i.e., a plot of y against x) and have your program add dots
to the trajectory to show where the ends of the time intervals lie. You should see the
time intervals getting shorter in the part of the trajectory close to the Sun, where the
comet is moving rapidly.

Hint: The simplest way to do this calculation is to make use of recursion, the ability
of a Python function to call itself. (If you're not familiar with the idea of recursion you
might like to look at Exercise 2.13 on page 83 before doing this exercise.) Write a user-
defined function called, say, step(r,t,H) that takes as arguments the position vector
r = (x,y) at a starting time t and an interval length H, and returns the new value of
r at time ¢ + H. This function should perform the modified midpoint/Richardson ex-
trapolation calculation described in Section 8.5.5 until either the calculation converges
to the required accuracy or you reach the maximum number n = 8 of modified mid-
point steps. If it fails to converge in eight steps, have your function call itself, twice, to
calculate separately the solution for the first then the second half of the interval from ¢
to ¢ + H, something like this:

rl = step(r,t,H/2)
r2 = step(rl,t+H/2,H/2)

(Then these functions can call themselves, and so forth, subdividing the interval as many
times as necessary to reach the required accuracy.)

8.18 Oscillating chemical reactions: The Belousov-Zhabotinsky reaction is a chemical
oscillator, a cocktail of chemicals which, when heated, undergoes a series of reactions
that cause the chemical concentrations in the mixture to oscillate between two extremes.
You can add an indicator dye to the reaction which changes color depending on the con-
centrations and watch the mixture switch back and forth between two different colors
for as long as you go on heating the mixture.

Physicist Ilya Prigogine formulated a mathematical model of this type of chemi-
cal oscillator, which he called the “Brusselator” after his home town of Brussels. The
equations for the Brusselator are

dx dy

ar _ . _ 2 a _ .2
T 1—(b+1)x+axy, 3 bx —ax*y.

Here x and y represent concentrations of chemicals and 4 and b are positive constants.

Write a program to solve these equations for the case a = 1, b = 3 with initial
conditions x = y = 0, to an accuracy of at least 6 = 10 'O per unit time in both x
and y, using the adaptive Bulirsch-Stoer method described in Section 8.5.6. Calculate

402




a solution from ¢ = 0 to t = 20, initially using a single time interval of size H = 20.
Allow a maximum of n = 8 modified midpoint steps in an interval before you divide
in half and try again.

Make a plot of your solutions for x and y as a function of time, both on the same
graph, and have your program add dots to the curves to show where the boundaries of
the time intervals lie. You should find that the points are significantly closer together in
parts of the solution where the variables are changing rapidly.

Hint: The simplest way to perform the calculation is to make use of recursion, as
described in Exercise 8.17.

EXERCISES

403



