
 CNtOscillations
We continue our study of physicsphenomena
to behavior that is recurrent it repeats
in some fashion

We havemet thisbehaviormanytimes
This is because we often look at the
behavior of systems just a little way
from equilibrium

Systems with local equilibria will
have oscillatory behavior in a region
near stable equilibria
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Wehave seen why this is a frequent
occurrence For a given stablept x a

we expand U X around that point
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But we are going to find more utility
in the complexfo
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It must be that Its be real so

this will tell us about C C2

To connect complex exponentials to
sine and cosine we note the
Euler relationship
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Great so B Be better be
real What does that mean
Rewritten
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But most importantly from a

conceptual point is the solution
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Dumping Oscillations

The first complication we can add
is a bit of damping Here we expect

energy to be lost over time but how

Let's start with the equation of
motion
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This is a linear ODE so if we find

a solution and it fits our conditions for
the system it is guaranteedtobe
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so let's guess t e't as
we have seen that form work before
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So that
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Whatabout BE CriticalDeping
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