
Chapter 8
Linear avsteKs

8.0 Introduction
As we’ve seen, in one-dimensional phase spaces the flow is extremely
con}neděall trajectories are forced to move monotonically or remain con-
stant. In higher-dimensional phase spaces, trajectories have much more room
to maneuver, and so a wider range of dynamical behavior becomes possible.
_ather than attack all this complexity at once, we begin with the simplest
class of higher-dimensional systems, namely linear systems in two dimensionsX
These systems are interesting in their own right, and, as we’ll see later, they
also play an important role in the classi}cation of }xed points of nonlinear
systems. We begin with some de}nitions and examples.

8.R .e}nitions and 1taKples
A tro-dimensional linear system is a system of the form

ẋ = ax+ by

ẏ = cx+ dy

where a, b, c, d are parameters. If we use boldface to denote vectors, this system
can be written more compactly in matrix form as

ṫ = At,

where
A =

(
a b
c d

)
and t =

(
x
y

)
.

Such a system is linear in the sense that if t1 and t2 are solutions, then so
is any linear combination c1t1 + c2t2. Lotice that ṫ = 0 when t = 0, so
t∗ = 0 is always a }xed point for any choice of A.

1jd
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The solutions of ṫ = At can be visualized as trajectories moving on the
(x, y) plane, in this context called the T?ase Tlane. Pur }rst example presents
the phase plane analysis of a familiar system.

1taKple 8.R.R,
As discussed in elementary physics courses, the vibrations of a mass hanging
from a linear spring are governed by the linear dizerential equation

mẍ+ kx = 0 U1V

where m is the mass, k is the spring constant, and x is the displacement of
the mass from equilibrium U6igure 5.1.1V. :ive a phase plane analysis of this
simTle ?armoni+ os+illator.

Fi;ure 8.R.R

aolmtion, As you probably recall, it’s easy to solve U1V analytically in terms
of sines and cosines. But that’s precisely what makes linear equations so spe-
cial5 6or the nonlinear equations of ultimate interest to us, it’s usually impos-
sible to }nd an analytical solution. We want to develop methods for deducing
the behavior of equations like U1V wit?omt actmally solpin; t?em.

The motion in the phase plane is determined by a vector }eld that comes
from the dizerential equation U1V. To }nd this vector }eld, we note that the
state of the system is characterized by its current position x and velocity vc
if we know the values of #ot? x and v, then U1V uniquely determines the future
states of the system. Therefore we rewrite U1V in terms of x and v, as follows:

ẋ = v U2aV

v̇ = − k

m
x. U2bV

1quation U2aV is just the de}nition of velocity, and U2bV is the dizerential
equation U1V rewritten in terms of v. To simplify the notation, let ω2 = k/m.
Then U2V becomes

ẋ = v UjaV
v̇ = −ω2x. UjbV
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The system UjV assigns a vector (ẋ, v̇) = (v,−ω2x) at each point (x, v), and
therefore represents a pe+tor field on the phase plane.

6or example, let’s see what the vector }eld looks like when we’re on the x-
axis. Then v = 0 and so (ẋ, v̇) = (0,−ω2x). Hence the vectors point vertically
downward for positive x and vertically upward for negative x U6igure 5.1.2V.
As x gets larger in magnitude, the vectors (0,−ω2x) get longer. Similarly, on
the v-axis, the vector }eld is (ẋ, v̇) = (v, 0), which points to the right when
v > 0 and to the left when v < 0. As we move around in phase space, the
vectors change direction as shown in 6igure 5.1.2.

Fi;ure 8.R.2

Cust as in Chapter 2, it is helpful to visualize the vector }eld in terms
of the motion of an imaginary fluid. In the present case, we imagine that
a fluid is flowing steadily on the phase plane with a local velocity given by
(ẋ, v̇) = (v,−ω2x). Then, to }nd the trajectory starting at (x0, v0), we place
an imaginary particle or T?ase Toint at (x0, v0) and watch how it is carried
around by the flow.

The flow in 6igure 5.1.2 swirls about the origin. The origin is special, like
the eye of a hurricane: a phase point placed there would remain motionless,
because (ẋ, v̇) = (0, 0) when (x, v) = (0, 0)c hence the origin is a fited Toint.
But a phase point starting anywhere else would circulate around the origin and
eventually return to its starting point. Such trajectories form +losed or#its,
as shown in 6igure 5.1.j. 6igure 5.1.j is called the T?ase Tortrait of the
systeměit shows the overall picture of trajectories in phase space.

Fi;ure 8.R.j
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What do }xed points and closed orbits have to do with the original problem
of a mass on a spring\ The answers are beautifully simple. The }xed point
(x, v) = (0, 0) corresponds to static equilibrium of the system: the mass is at
rest at its equilibrium position and will remain there forever, since the forces on
it are balanced. The closed orbits have a more interesting interpretation: they
correspond to periodic motions, i.e., oscillations of the mass. To see this, just
look at some points on a closed orbit U6igure 5.1.9V. When the displacement
x is most negative, the velocity v is zeroc this corresponds to one extreme of
the oscillation, where the spring is most compressed U6igure 5.1.9aV.

Fi;ure 8.R.9

In the next instant as the phase point flows along the orbit, it is carried to
points where x has increased and v is now positivec the mass is being pushed
back toward its equilibrium position. But by the time the mass has reached
x = 0, it has a large positive velocity U6igure 5.1.9bV and so it overshoots
x = 0. The mass eventually comes to rest at the other end of its swing, where
x is most positive and v is zero again U6igure 5.1.9cV. Then the mass gets
pulled up again and eventually completes the cycle U6igure 5.1.9dV.

The shape of the closed orbits also has an interesting physical interpreta-
tion. The orbits in 6igures 5.1.j and 5.1.9 are actually elliTses given by the
equation ω2x2 + v2 = C, where C ≥ 0 is a constant. In 1xercise 5.1.1, you
are asked to derive this geometric result, and to show that it is equivalent to
conservation of energy. !
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1taKple 8.R.2,

Solve the linear system ṫ = At, where A =

(
a 0
0 −1

)
. :raph the phase

portrait as a varies from −∞ to +∞, showing the qualitatively dizerent cases.
aolmtion, The system is

(
ẋ
ẏ

)
=

(
a 0
0 −1

)(
x
y

)
.

Jatrix multiplication yields
ẋ = ax

ẏ = −y

which shows that the two equations are mn+omTledc there’s no x in the y-
equation and vice versa. In this simple case, each equation may be solved
separately. The solution is

x(t) = x0e
at U1aV

y(t) = y0e
−t. U1bV

The phase portraits for dizerent values of a are shown in 6igure 5.1.5. In each
case, y(t) decays exponentially. When a < 0, x(t) also decays exponentially
and so all trajectories approach the origin as t → ∞. However, the direction
of approach depends on the size of a compared to −1.

In 6igure 5.1.5a, we have a < −1, which implies that x(t) decays more
rapidly than y(t). The trajectories approach the origin tangent to the slower
direction Uhere, the y-directionV. The intuitive explanation is that when a is
very negative, the trajectory slams horizontally onto the y-axis, because the
decay of x(t) is almost instantaneous. Then the trajectory dawdles along the
y-axis toward the origin, and so the approach is tangent to the y-axis. Pn
the other hand, if we look #acFwards along a trajectory (t → −∞), then the
trajectories all become parallel to the faster decaying direction Uhere, the x-
directionV. These conclusions are easily proved by looking at the slope dy/dx =
ẏ/ẋ along the trajectoriesc see 1xercise 5.1.2. In 6igure 5.1.5a, the }xed point
t∗ = y is called a sta#le node.

6igure 5.1.5b shows the case a = −1. 1quation U1V shows that y(t)/x(t) =
y0/x0 = constant, and so all trajectories are straight lines through the origin.
This is a very special caseěit occurs because the decay rates in the two
directions are precisely equal. In this case, t∗ is called a symmetrical node or
star.

When−1 < a < 0, we again have a node, but now the trajectories approach
t∗ along the x-direction, which is the more slowly decaying direction for this
range of a U6igure 5.1.5cV.

Something dramatic happens when a = 0 U6igure 5.1.5dV. Low 1quation
U1aV becomes x(t) ≡ x0 and so there’s an entire line o7 fited Toints along
the x-axis. All trajectories approach these }xed points along vertical lines.
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Fi;ure 8.R.8

6inally when a > 0 U6igure 5.1.5eV, t∗ = y becomes unstable, due to
the exponential growth in the x-direction. Jost trajectories veer away from
t∗ and head out to in}nity. UAn exception occurs if the trajectory starts on
the y-axisc then it walks a tightrope to the origin.V In forward time, typical
trajectories are asymptotic to the x-axisc in backward time, to the y-axis. Here
t∗ = y is called a saddle Toint. The y-axis is called the sta#le mani7old
of the saddle point t∗, de}ned as the set of initial conditions t0 such that
t(t) → t∗ as t → ∞. Gikewise, the mnsta#le mani7old of t∗ is the set of
initial conditions such that t(t)→ t∗ as t→ −∞. Here the unstable manifold
is the x-axis. Lote that a typical trajectory asymptotically approaches the
unstable manifold as t→∞, and approaches the stable manifold as t→ −∞.
This sounds backwards, but it’s right5 !

ata#ilitv Lan;ua;e
It’s useful to introduce some language that allows us to discuss the stability of
dizerent types of }xed points. This language will be especially useful when we
analyze }xed points of nonlinear systems. 6or now we’ll be informalc precise
de}nitions of the dizerent types of stability will be given in 1xercise 5.1.1y.

We say that t∗ = y is an attra+tin; }xed point in 6igures 5.1.5aĜcc all
trajectories that start near t∗ approach it as t → ∞. That is, t(t) → t∗ as
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t → ∞. In fact t∗ attracts all trajectories in the phase plane, so it could be
called ;lo#ally attra+tin;.

There’s a completely dizerent notion of stability which relates to the be-
havior of trajectories for all time, not just as t → ∞. We say that a }xed
point t∗ is GiaTmnop sta#le if all trajectories that start su{ciently close to
t∗ remain close to it for all time. In 6igures 5.1.5aĜd, the origin is Giapunov
stable.

6igure 5.1.5d shows that a }xed point can be Giapunov stable but not
attracting. This situation comes up often enough that there is a special name
for it. When a }xed point is Giapunov stable but not attracting, it is called
nemtrally sta#le. Learby trajectories are neither attracted to nor repelled
from a neutrally stable point. As a second example, the equilibrium point
of the simple harmonic oscillator U6igure 5.1.jV is neutrally stable. Leutral
stability is commonly encountered in mechanical systems in the absence of
friction.

Conversely, it’s possible for a }xed point to be attracting but not Giapunov
stablec thus, neither notion of stability implies the other. An example is given
by the following vector }eld on the circle: θ̇ = 1 − cos θ U6igure 5.1.eV. Here
θ∗ = 0 attracts all trajectories as t→∞, but it is not Giapunov stablec there
are trajectories that start in}nitesimally close to θ∗ but go on a very large
excursion before returning to θ∗.

Fi;ure 8.R.e

However, in practice the two types of stability often occur together. If
a }xed point is #ot? Giapunov stable and attracting, we’ll call it sta#le, or
sometimes asymTtoti+ally sta#le.

6inally, t∗ is mnsta#le in 6igure 5.1.5e, because it is neither attracting
nor Giapunov stable.

A graphical convention: we’ll use open dots to denote unstable }xed points,
and solid black dots to denote Giapunov stable }xed points. This convention
is consistent with that used in previous chapters.
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8.2 Classi}cation o7 Linear avsteKs
The examples in the last section had the special feature that two of the en-
tries in the matrix A were zero. Low we want to study the general case of
an arbitrary 2 × 2 matrix, with the aim of classifying all the possible phase
portraits that can occur.

1xample 5.1.2 provides a clue about how to proceed. _ecall that the x
and y axes played a crucial geometric role. They determined the direction
of the trajectories as t → ±∞. They also contained special strai;?t-line
traDe+tories: a trajectory starting on one of the coordinate axes stayed on
that axis forever, and exhibited simple exponential growth or decay along it.

6or the general case, we would like to }nd the analog of these straight-line
trajectories. That is, we seek trajectories of the form

t(t) = eλtp, U2V

where p ̸= y is some }xed vector to be determined, and λ is a growth rate,
also to be determined. If such solutions exist, they correspond to exponential
motion along the line spanned by the vector p.

To }nd the conditions on p and λ, we substitute t(t) = eλtp into ṫ = At,
and obtain λeλtp = eλtAp. Canceling the nonzero scalar factor eλt yields

Ap = λp, UjV

which says that the desired straight-line solutions exist if p is an ei;enpe+tor
of A with corresponding ei;enpalme λ. In this case we call the solution U2V
an ei;ensolmtion.

Get’s recall how to }nd eigenvalues and eigenvectors. UIf your memory needs
more refreshing, see any text on linear algebra.V In general, the eigenvalues
of a matrix A are given by the +?ara+teristi+ e[mation det(A − λI) = 0,
where I is the identity matrix. 6or a 2 × 2 matrix

A =

(
a b

c d

)
,

the characteristic equation becomes

det
(
a− λ b

c d− λ

)
= 0.

1xpanding the determinant yields

λ2 − τλ+∆ = 0 U9V

where
τ = trace(A) = a+ d,

∆ = det(A) = ad− bc.
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Then
λ1 =

τ +
√
τ2 − 4∆

2
, λ2 =

τ −
√
τ2 − 4∆

2
U5V

are the solutions of the quadratic equation U9V. In other words, the eigenvalues
depend only on the trace and determinant of the matrix A.

The typical situation is for the eigenvalues to be distinct: λ1 ̸= λ2. In this
case, a theorem of linear algebra states that the corresponding eigenvectors
p1 and p2 are linearly independent, and hence span the entire plane U6igure
5.2.1V.

Fi;ure 8.2.R

In particular, any initial condition t0 can be written as a linear combination
of eigenvectors, say t0 = c1p1 + c2p2. This observation allows us to write
down the general solution for t(t). It is simply

t(t) = c1e
λ1tp1 + c2e

λ2tp2. UeV

Why is this the general solution\ 6irst of all, it is a linear combination of
solutions to ṫ = At, and hence is itself a solution. Second, it satis}es the
initial condition t(0) = t0, and so by the existence and uniqueness theorem,
it is the only solution. USee Section e.2 for a general statement of the existence
and uniqueness theorem.V

1taKple 8.2.R,
Solve the initial value problem ẋ = x + y, ẏ = 4x − 2y, subject to the initial
condition (x0, y0) = (2,−3).

aolmtion, The corresponding matrix equation is
(
ẋ

ẏ

)
=

(
1 1

4 −2

)(
x

y

)
.

6irst we }nd the eigenvalues of the matrix A. The matrix has τ = −1 and
∆ = −6, so the characteristic equation is λ2 + λ− 6 = 0. Hence

λ1 = 2, λ2 = −3.
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Lext we }nd the eigenvectors. :iven an eigenvalue λ, the corresponding
eigenvector p = (v1, v2) satis}es

(
1− λ 1

4 −2− λ

)(
v1

v2

)
=

(
0

0

)
.

6or λ1 = 2, this yields
(
−1 1

4 −4

)(
v1

v2

)
=

(
0

0

)

which has a nontrivial solution (v1, v2) = (1, 1), or any scalar multiple thereof.
UPf course, any multiple of an eigenvector is always an eigenvectorc we try to
pick the simplest multiple, but any one will do.V Similarly, for λ2 = −3, the
eigenvector equation becomes

(
4 1

4 1

)(
v1

v2

)
=

(
0

0

)

which has a nontrivial solution (v1, v2) = (1,−4). In summary,

p1 =

(
1

1

)
, p2 =

(
1

−4

)
.

Lext we write the general solution as a linear combination of eigensolu-
tions. 6rom UeV, the general solution is

t(t) = c1

(
1

1

)
e2t + c2

(
1

−4

)
e−3t. UdV

6inally, we compute c1 and c2 to satisfy the initial condition (x0, y0) = (2,−3).
At t = 0, 1quation UdV becomes

(
2

−3

)
= c1

(
1

1

)
+ c2

(
1

−4

)
,

which is equivalent to the algebraic system

2 = c1 + c2,

−3 = c1 − 4c2.

The solution is c1 = 1, c2 = 1. Substituting back into UdV yields

x(t) = e2t + e−3t

y(t) = e2t − 4e−3t

as the solution to the initial value problem. !
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Whew5 6ortunately we don’t need to go through all this to draw the phase
portrait of a linear system. All we need to know are the eigenvectors and
eigenvalues.

1taKple 8.2.2,
.raw the phase portrait for the system of 1xample 5.2.1.

aolmtion, The system has eigenvalues λ1 = 2, λ2 = −3. Hence the }rst
eigensolution grows exponentially, and the second eigensolution decays. This
means the origin is a saddle Toint. Its stable manifold is the line spanned by
the eigenvector p2 = (1,−4), corresponding to the decaying eigensolution.
Similarly, the unstable manifold is the line spanned by p1 = (1, 1). 6igure
5.2.2 shows the phase portrait.

Fi;ure 8.2.2

As with all saddle points, a typical trajectory approaches the unstable mani-
fold as t→∞, and the stable manifold as t→ −∞. !

1taKple 8.2.j,
Sketch a typical phase portrait for the case λ2 < λ1 < 0.

aolmtion, 6irst suppose λ2 < λ1 < 0. Then both eigensolutions decay
exponentially. 6igure 5.2.j shows the phase portrait.

The }xed point is a stable node, as in 6igures 5.1.5a and 5.1.5c, except
now the eigenvectors are not mutually perpendicular, in general. Trajectories
typically approach the origin tangent to the slor ei;endire+tion, de}ned as
the direction spanned by the eigenvector with the smaller |λ|. In backwards
time (t→ −∞), the trajectories become parallel to the fast eigendirection.

If we reverse all the arrows in 6igure 5.2.j, we obtain a typical phase
portrait for an mnsta#le node. !

1taKple 8.2.9,
What happens if the eigenvalues are comTlet numbers\
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Fi;ure 8.2.j

aolmtion, If the eigenvalues are complex, the }xed point is either a +enter
U6igure 5.2.9aV or a sTiral U6igure 5.2.9bV. We’ve already seen an example
of a center in the simple harmonic oscillator of Section 5.1c the origin is sur-
rounded by a family of closed orbits. Lote that centers are nemtrally sta#le,
since nearby trajectories are neither attracted to nor repelled from the }xed
point. A spiral would occur if the harmonic oscillator were lightly damped.
Then the trajectory would just fail to close, because the oscillator loses a bit
of energy on each cycle.

Fi;ure 8.2.9

To justify these statements, recall that the eigenvalues are

λ1,2 =
1

2

(
τ ±

√
τ2 − 4∆

)
.

Thus complex eigenvalues occur when

τ2 − 4∆ < 0.

To simplify the notation, let’s write the eigenvalues as

λ1,2 = α± iω

where
α = τ/2, ω =

1

2

√
4∆− τ2 .
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By assumption, ω ̸= 0. Then the eigenvalues are distinct and so the general
solution is still given by

t(t) = c1e
λ1tp1 + c2e

λ2tp2.

But now the c’s and p’s are comTlet, since the λ’s are. This means that t(t)
involves linear combinations of e(α±iω)t. By 1uler’s formula, eiωt = cosωt +
i sinωt. Hence t(t) is a combination of terms involving eαt cosωt and eαt sinωt.
Such terms represent exponentially decayin; oscillations if α = _e(λ) < 0 and
;rowin; oscillations if α > 0. The corresponding }xed points are sta#le and
mnsta#le sTirals, respectively. 6igure 5.2.9b shows the stable case.

If the eigenvalues are pure imaginary (α = 0), then all the solutions are
periodic with period T = 2π/ω. The oscillations have }xed amplitude and the
}xed point is a center.

6or both centers and spirals, it’s easy to determine whether the rotation is
clockwise or counterclockwisec just compute a few vectors in the vector }eld
and the sense of rotation should be obvious. !

1taKple 8.2.8,
In our analysis of the general case, we have been assuming that the eigenvalues
are distinct. What happens if the eigenvalues are e[mal \

aolmtion, Suppose λ1 = λ2 = λ. There are two possibilities: either there
are two independent eigenvectors corresponding to λ, or there’s only one.

If there are two independent eigenvectors, then they span the plane and
so epery pector is an ei;enpector wit? t?is same ei;enpalme λ. To see this,
write an arbitrary vector t0 as a linear combination of the two eigenvectors:
t0 = c1p1 + c2p2. Then

At0 = A(c1p1 + c2p2) = c1λp1 + c2λp2 = λt0

so t0 is also an eigenvector with eigenvalue λ. Since multiplication by A simply
stretches every vector by a factor λ, the matrix must be a multiple of the
identity:

A =

(
λ 0
0 λ

)
.

Then if λ ̸= 0, all trajectories are straight lines through the origin (t(t) =
eλtt0) and the }xed point is a star node U6igure 5.2.5V. Pn the other hand,
if λ = 0, the whole plane is }lled with }xed points5 ULo surpriseěthe system
is ṫ = y.V

The other possibility is that there’s only one eigenvector Umore accu-
rately, the eigenspace corresponding to λ is one-dimensional.V 6or example,
any matrix of the form A =

(
λ b
0 λ

)
, with b ̸= 0 has only a one-dimensional

eigenspace U1xercise 5.2.11V.
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Fi;ure 8.2.8

Fi;ure 8.2.e

When there’s only one eigendirection, the }xed point is a de;enerate
node. A typical phase portrait is shown in 6igure 5.2.e. As t→ +∞ and also
as t→ −∞, all trajectories become parallel to the one available eigendirection.

A good way to think about the degenerate node is to imagine that it has
been created by deforming an ordinary node. The ordinary node has two inde-
pendent eigendirectionsc all trajectories are parallel to the slow eigendirection
as t→∞, and to the fast eigendirection as t→ −∞ U6igure 5.2.daV.

Fi;ure 8.2.d

Low suppose we start changing the parameters of the system in such a way
that the two eigendirections are scissored together. Then some of the trajecto-
ries will get squashed in the collapsing region between the two eigendirections,
while the surviving trajectories get pulled around to form the degenerate node
U6igure 5.2.dbV.
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Another way to get intuition about this case is to realize that the degen-
erate node is on the #orderline #etween a sTiral and a nodeX The trajectories
are trying to wind around in a spiral, but they don’t quite make it. !

Classi}cation o7 Fited Soints
By now you’re probably tired of all the examples and ready for a simple
classi}cation scheme. Happily, there is one. We can show the type and stability
of all the dizerent }xed points on a single diagram U6igure 5.2.3V.

Fi;ure 8.2.3

The axes are the trace τ and the determinant ∆ of the matrix A. All of
the information in the diagram is implied by the following formulas:

λ1,2 =
1

2

(
τ ±

√
τ2 − 4∆

)
, ∆ = λ1λ2, τ = λ1 + λ2.

The }rst equation is just U5V. The second and third can be obtained by writing
the characteristic equation in the form (λ− λ1)(λ− λ2) = λ2 − τλ+∆ = 0.

To arrive at 6igure 5.2.3, we make the following observations:
If ∆ < 0, the eigenvalues are real and have opposite signsc hence the }xed

point is a saddle Toint.
If ∆ > 0, the eigenvalues are either real with the same sign UnodesV, or

complex conjugate UsTirals and centersV. Lodes satisfy τ2−4∆ > 0 and spirals
satisfy τ2 − 4∆ < 0. The parabola τ2 − 4∆ = 0 is the borderline between
nodes and spiralsc star nodes and degenerate nodes live on this parabola. The
stability of the nodes and spirals is determined by τ . When τ < 0, both
eigenvalues have negative real parts, so the }xed point is stable. lnstable
spirals and nodes have τ > 0. Leutrally stable centers live on the borderline
τ = 0, where the eigenvalues are purely imaginary.
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If ∆ = 0, at least one of the eigenvalues is zero. Then the origin is not an
isolated }xed point. There is either a whole line of }xed points, as in 6igure
5.1.5d, or a plane of }xed points, if A = 0.

6igure 5.2.3 shows that saddle points, nodes, and spirals are the major
types of }xed pointsc they occur in large open regions of the (∆, τ) plane.
Centers, stars, degenerate nodes, and non-isolated }xed points are #order-
line +ases that occur along curves in the (∆, τ) plane. Pf these borderline
cases, centers are by far the most important. They occur very commonly in
frictionless mechanical systems where energy is conserved.

1taKple 8.2.e,

Classify the }xed point t∗ = y for the system ṫ = At, where A =

(
1 2

3 4

)
.

aolmtion, The matrix has ∆ = −2c hence the }xed point is a saddle point. !

1taKple 8.2.d,

_edo 1xample 5.2.e for A =

(
2 1

3 4

)
.

aolmtion, Low ∆ = 5 and τ = 6. Since ∆ > 0 and τ2 − 4∆ = 16 > 0, the
}xed point is a node. It is unstable, since τ > 0. !

8.j Lope �zairs
To arouse your interest in the classi}cation of linear systems, we now discuss
a simple model for the dynamics of love azairs UStrogatz 1N33V. The following
story illustrates the idea.

_omeo is in love with Culiet, but in our version of this story, Culiet is a
}ckle lover. The more _omeo loves her, the more Culiet wants to run away
and hide. But when _omeo gets discouraged and backs oz, Culiet begins to
}nd him strangely attractive. _omeo, on the other hand, tends to echo her:
he warms up when she loves him, and grows cold when she hates him.

Get
R(t) = _omeo’s lovefhate for Culiet at time t

J(t) = Culiet’s lovefhate for _omeo at time t.
Sositive values of R, J signify love, negative values signify hate. Then a model
for their star-crossed romance is

Ṙ = aJ

J̇ = −bR

where the parameters a and b are positive, to be consistent with the story.
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