
Chapter
Linear ste s

.0 Introduction
As we’ve seen, in one-dimensional phase spaces the flow is extremely
con ned all trajectories are forced to move monotonically or remain con-
stant. In higher-dimensional phase spaces, trajectories have much more room
to maneuver, and so a wider range of dynamical behavior becomes possible.
ather than attack all this complexity at once, we begin with the simplest

class of higher-dimensional systems, namely linear systems in two dimensions
These systems are interesting in their own right, and, as we’ll see later, they
also play an important role in the classi cation of xed points of nonlinear
systems. We begin with some de nitions and examples.

. e nitions and a ples
A t o-dimensional linear system is a system of the form

ẋ = ax+ by

ẏ = cx+ dy

where a, b, c, d are parameters. If we use boldface to denote vectors, this system
can be written more compactly in matrix form as

ṫ = At,

where
A =

(
a b
c d

)
and t =

(
x
y

)
.

Such a system is linear in the sense that if t1 and t2 are solutions, then so
is any linear combination c1t1 + c2t2. otice that ṫ = 0 when t = 0, so
t∗ = 0 is always a xed point for any choice of A.

1



1 onlinear ynamics and aos

The solutions of ṫ = At can be visualized as trajectories moving on the
(x, y) plane, in this context called the ase lane. ur rst example presents
the phase plane analysis of a familiar system.

a ple . .
As discussed in elementary physics courses, the vibrations of a mass hanging
from a linear spring are governed by the linear di erential equation

mẍ+ kx = 0 1

where m is the mass, k is the spring constant, and x is the displacement of
the mass from equilibrium igure 5.1.1 . ive a phase plane analysis of this
sim le armoni os illator.

Fi ure . .

ol tion As you probably recall, it’s easy to solve 1 analytically in terms
of sines and cosines. But that’s precisely what makes linear equations so spe-
cial or the nonlinear equations of ultimate interest to us, it’s usually impos-
sible to nd an analytical solution. We want to develop methods for deducing
the behavior of equations like 1 wit o t act ally sol in t em.

The motion in the phase plane is determined by a vector eld that comes
from the di erential equation 1 . To nd this vector eld, we note that the
state of the system is characterized by its current position x and velocity v
if we know the values of ot x and v, then 1 uniquely determines the future
states of the system. Therefore we rewrite 1 in terms of x and v, as follows:

ẋ = v 2a

v̇ = − k

m
x. 2b

quation 2a is just the de nition of velocity, and 2b is the di erential
equation 1 rewritten in terms of v. To simplify the notation, let ω2 = k/m.
Then 2 becomes

ẋ = v a
v̇ = −ω2x. b
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ẋ = v a
v̇ = −ω2x. b

inear ystems 1

The system assigns a vector (ẋ, v̇) = (v,−ω2x) at each point (x, v), and
therefore represents a e tor field on the phase plane.

or example, let’s see what the vector eld looks like when we’re on the x-
axis. Then v = 0 and so (ẋ, v̇) = (0,−ω2x). Hence the vectors point vertically
downward for positive x and vertically upward for negative x igure 5.1.2 .
As x gets larger in magnitude, the vectors (0,−ω2x) get longer. Similarly, on
the v-axis, the vector eld is (ẋ, v̇) = (v, 0), which points to the right when
v > 0 and to the left when v < 0. As we move around in phase space, the
vectors change direction as shown in igure 5.1.2.

Fi ure . .2

ust as in Chapter 2, it is helpful to visualize the vector eld in terms
of the motion of an imaginary fluid. In the present case, we imagine that
a fluid is flowing steadily on the phase plane with a local velocity given by
(ẋ, v̇) = (v,−ω2x). Then, to nd the trajectory starting at (x0, v0), we place
an imaginary particle or ase oint at (x0, v0) and watch how it is carried
around by the flow.

The flow in igure 5.1.2 swirls about the origin. The origin is special, like
the eye of a hurricane: a phase point placed there would remain motionless,
because (ẋ, v̇) = (0, 0) when (x, v) = (0, 0) hence the origin is a fi ed oint.
But a phase point starting anywhere else would circulate around the origin and
eventually return to its starting point. Such trajectories form losed or its,
as shown in igure 5.1. . igure 5.1. is called the ase ortrait of the
system it shows the overall picture of trajectories in phase space.

Fi ure . .
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What do xed points and closed orbits have to do with the original problem
of a mass on a spring The answers are beautifully simple. The xed point
(x, v) = (0, 0) corresponds to static equilibrium of the system: the mass is at
rest at its equilibrium position and will remain there forever, since the forces on
it are balanced. The closed orbits have a more interesting interpretation: they
correspond to periodic motions, i.e., oscillations of the mass. To see this, just
look at some points on a closed orbit igure 5.1. . When the displacement
x is most negative, the velocity v is zero this corresponds to one extreme of
the oscillation, where the spring is most compressed igure 5.1. a .

Fi ure . .

In the next instant as the phase point flows along the orbit, it is carried to
points where x has increased and v is now positive the mass is being pushed
back toward its equilibrium position. But by the time the mass has reached
x = 0, it has a large positive velocity igure 5.1. b and so it overshoots
x = 0. The mass eventually comes to rest at the other end of its swing, where
x is most positive and v is zero again igure 5.1. c . Then the mass gets
pulled up again and eventually completes the cycle igure 5.1. d .

The shape of the closed orbits also has an interesting physical interpreta-
tion. The orbits in igures 5.1. and 5.1. are actually elli ses given by the
equation ω2x2 + v2 = C, where C ≥ 0 is a constant. In xercise 5.1.1, you
are asked to derive this geometric result, and to show that it is equivalent to
conservation of energy. !
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a ple . .2

Solve the linear system ṫ = At, where A =

(
a 0
0 −1

)
. raph the phase

portrait as a varies from −∞ to +∞, showing the qualitatively di erent cases.
ol tion The system is

(
ẋ
ẏ

)
=

(
a 0
0 −1

)(
x
y

)
.

atrix multiplication yields
ẋ = ax

ẏ = −y

which shows that the two equations are n o led there’s no x in the y-
equation and vice versa. In this simple case, each equation may be solved
separately. The solution is

x(t) = x0e
at 1a

y(t) = y0e
−t. 1b

The phase portraits for di erent values of a are shown in igure 5.1.5. In each
case, y(t) decays exponentially. When a < 0, x(t) also decays exponentially
and so all trajectories approach the origin as t → ∞. However, the direction
of approach depends on the size of a compared to −1.

In igure 5.1.5a, we have a < −1, which implies that x(t) decays more
rapidly than y(t). The trajectories approach the origin tangent to the slower
direction here, the y-direction . The intuitive explanation is that when a is
very negative, the trajectory slams horizontally onto the y-axis, because the
decay of x(t) is almost instantaneous. Then the trajectory dawdles along the
y-axis toward the origin, and so the approach is tangent to the y-axis. n
the other hand, if we look ac wards along a trajectory (t → −∞), then the
trajectories all become parallel to the faster decaying direction here, the x-
direction . These conclusions are easily proved by looking at the slope dy/dx =
ẏ/ẋ along the trajectories see xercise 5.1.2. In igure 5.1.5a, the xed point
t∗ = y is called a sta le node.

igure 5.1.5b shows the case a = −1. quation 1 shows that y(t)/x(t) =
y0/x0 = constant, and so all trajectories are straight lines through the origin.
This is a very special case it occurs because the decay rates in the two
directions are precisely equal. In this case, t∗ is called a symmetrical node or
star.

When−1 < a < 0, we again have a node, but now the trajectories approach
t∗ along the x-direction, which is the more slowly decaying direction for this
range of a igure 5.1.5c .

Something dramatic happens when a = 0 igure 5.1.5d . ow quation
1a becomes x(t) ≡ x0 and so there’s an entire line o fi ed oints along
the x-axis. All trajectories approach these xed points along vertical lines.
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Fi ure . .

inally when a > 0 igure 5.1.5e , t∗ = y becomes unstable, due to
the exponential growth in the x-direction. ost trajectories veer away from
t∗ and head out to in nity. An exception occurs if the trajectory starts on
the y-axis then it walks a tightrope to the origin. In forward time, typical
trajectories are asymptotic to the x-axis in backward time, to the y-axis. Here
t∗ = y is called a saddle oint. The y-axis is called the sta le mani old
of the saddle point t∗, de ned as the set of initial conditions t0 such that
t(t) → t∗ as t → ∞. ikewise, the nsta le mani old of t∗ is the set of
initial conditions such that t(t)→ t∗ as t→ −∞. Here the unstable manifold
is the x-axis. ote that a typical trajectory asymptotically approaches the
unstable manifold as t→∞, and approaches the stable manifold as t→ −∞.
This sounds backwards, but it’s right !

ta ilit Lan ua e
It’s useful to introduce some language that allows us to discuss the stability of
di erent types of xed points. This language will be especially useful when we
analyze xed points of nonlinear systems. or now we’ll be informal precise
de nitions of the di erent types of stability will be given in xercise 5.1.1 .

We say that t∗ = y is an attra tin xed point in igures 5.1.5a c all
trajectories that start near t∗ approach it as t → ∞. That is, t(t) → t∗ as
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t → ∞. In fact t∗ attracts all trajectories in the phase plane, so it could be
called lo ally attra tin .

There’s a completely di erent notion of stability which relates to the be-
havior of trajectories for all time, not just as t → ∞. We say that a xed
point t∗ is ia no sta le if all trajectories that start su ciently close to
t∗ remain close to it for all time. In igures 5.1.5a d, the origin is iapunov
stable.

igure 5.1.5d shows that a xed point can be iapunov stable but not
attracting. This situation comes up often enough that there is a special name
for it. When a xed point is iapunov stable but not attracting, it is called
ne trally sta le. earby trajectories are neither attracted to nor repelled
from a neutrally stable point. As a second example, the equilibrium point
of the simple harmonic oscillator igure 5.1. is neutrally stable. eutral
stability is commonly encountered in mechanical systems in the absence of
friction.

Conversely, it’s possible for a xed point to be attracting but not iapunov
stable thus, neither notion of stability implies the other. An example is given
by the following vector eld on the circle: θ̇ = 1 − cos θ igure 5.1. . Here
θ∗ = 0 attracts all trajectories as t→∞, but it is not iapunov stable there
are trajectories that start in nitesimally close to θ∗ but go on a very large
excursion before returning to θ∗.

Fi ure . .

However, in practice the two types of stability often occur together. If
a xed point is ot iapunov stable and attracting, we’ll call it sta le, or
sometimes asym toti ally sta le.

inally, t∗ is nsta le in igure 5.1.5e, because it is neither attracting
nor iapunov stable.

A graphical convention: we’ll use open dots to denote unstable xed points,
and solid black dots to denote iapunov stable xed points. This convention
is consistent with that used in previous chapters.
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.2 Classi cation o Linear ste s
The examples in the last section had the special feature that two of the en-
tries in the matrix A were zero. ow we want to study the general case of
an arbitrary 2 × 2 matrix, with the aim of classifying all the possible phase
portraits that can occur.

xample 5.1.2 provides a clue about how to proceed. ecall that the x
and y axes played a crucial geometric role. They determined the direction
of the trajectories as t → ±∞. They also contained special strai t-line
tra e tories: a trajectory starting on one of the coordinate axes stayed on
that axis forever, and exhibited simple exponential growth or decay along it.

or the general case, we would like to nd the analog of these straight-line
trajectories. That is, we seek trajectories of the form

t(t) = eλtp, 2

where p ̸= y is some xed vector to be determined, and λ is a growth rate,
also to be determined. If such solutions exist, they correspond to exponential
motion along the line spanned by the vector p.

To nd the conditions on p and λ, we substitute t(t) = eλtp into ṫ = At,
and obtain λeλtp = eλtAp. Canceling the nonzero scalar factor eλt yields

Ap = λp,

which says that the desired straight-line solutions exist if p is an ei en e tor
of A with corresponding ei en al e λ. In this case we call the solution 2
an ei ensol tion.

et’s recall how to nd eigenvalues and eigenvectors. If your memory needs
more refreshing, see any text on linear algebra. In general, the eigenvalues
of a matrix A are given by the ara teristi e ation det(A − λI) = 0,
where I is the identity matrix. or a 2 × 2 matrix

A =

(
a b

c d

)
,

the characteristic equation becomes

det
(
a− λ b

c d− λ

)
= 0.

xpanding the determinant yields

λ2 − τλ+∆ = 0

where
τ = trace(A) = a+ d,

∆ = det(A) = ad− bc.
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Then
λ1 =

τ +
√
τ2 − 4∆

2
, λ2 =

τ −
√
τ2 − 4∆

2
5

are the solutions of the quadratic equation . In other words, the eigenvalues
depend only on the trace and determinant of the matrix A.

The typical situation is for the eigenvalues to be distinct: λ1 ̸= λ2. In this
case, a theorem of linear algebra states that the corresponding eigenvectors
p1 and p2 are linearly independent, and hence span the entire plane igure
5.2.1 .

Fi ure .2.

In particular, any initial condition t0 can be written as a linear combination
of eigenvectors, say t0 = c1p1 + c2p2. This observation allows us to write
down the general solution for t(t). It is simply

t(t) = c1e
λ1tp1 + c2e

λ2tp2.

Why is this the general solution irst of all, it is a linear combination of
solutions to ṫ = At, and hence is itself a solution. Second, it satis es the
initial condition t(0) = t0, and so by the existence and uniqueness theorem,
it is the only solution. See Section .2 for a general statement of the existence
and uniqueness theorem.

a ple .2.
Solve the initial value problem ẋ = x + y, ẏ = 4x − 2y, subject to the initial
condition (x0, y0) = (2,−3).

ol tion The corresponding matrix equation is
(
ẋ

ẏ

)
=

(
1 1

4 −2

)(
x

y

)
.

irst we nd the eigenvalues of the matrix A. The matrix has τ = −1 and
∆ = −6, so the characteristic equation is λ2 + λ− 6 = 0. Hence

λ1 = 2, λ2 = −3.
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ext we nd the eigenvectors. iven an eigenvalue λ, the corresponding
eigenvector p = (v1, v2) satis es

(
1− λ 1

4 −2− λ

)(
v1

v2

)
=

(
0

0

)
.

or λ1 = 2, this yields
(
−1 1

4 −4

)(
v1

v2

)
=

(
0

0

)

which has a nontrivial solution (v1, v2) = (1, 1), or any scalar multiple thereof.
f course, any multiple of an eigenvector is always an eigenvector we try to

pick the simplest multiple, but any one will do. Similarly, for λ2 = −3, the
eigenvector equation becomes

(
4 1

4 1

)(
v1

v2

)
=

(
0

0

)

which has a nontrivial solution (v1, v2) = (1,−4). In summary,

p1 =

(
1

1

)
, p2 =

(
1

−4

)
.

ext we write the general solution as a linear combination of eigensolu-
tions. rom , the general solution is

t(t) = c1

(
1

1

)
e2t + c2

(
1

−4

)
e−3t.

inally, we compute c1 and c2 to satisfy the initial condition (x0, y0) = (2,−3).
At t = 0, quation becomes

(
2

−3

)
= c1

(
1

1

)
+ c2

(
1

−4

)
,

which is equivalent to the algebraic system

2 = c1 + c2,

−3 = c1 − 4c2.

The solution is c1 = 1, c2 = 1. Substituting back into yields

x(t) = e2t + e−3t

y(t) = e2t − 4e−3t

as the solution to the initial value problem. !
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Whew ortunately we don’t need to go through all this to draw the phase
portrait of a linear system. All we need to know are the eigenvectors and
eigenvalues.

a ple .2.2
raw the phase portrait for the system of xample 5.2.1.

ol tion The system has eigenvalues λ1 = 2, λ2 = −3. Hence the rst
eigensolution grows exponentially, and the second eigensolution decays. This
means the origin is a saddle oint. Its stable manifold is the line spanned by
the eigenvector p2 = (1,−4), corresponding to the decaying eigensolution.
Similarly, the unstable manifold is the line spanned by p1 = (1, 1). igure
5.2.2 shows the phase portrait.

Fi ure .2.2

As with all saddle points, a typical trajectory approaches the unstable mani-
fold as t→∞, and the stable manifold as t→ −∞. !

a ple .2.
Sketch a typical phase portrait for the case λ2 < λ1 < 0.

ol tion irst suppose λ2 < λ1 < 0. Then both eigensolutions decay
exponentially. igure 5.2. shows the phase portrait.

The xed point is a stable node, as in igures 5.1.5a and 5.1.5c, except
now the eigenvectors are not mutually perpendicular, in general. Trajectories
typically approach the origin tangent to the slo ei endire tion, de ned as
the direction spanned by the eigenvector with the smaller |λ|. In backwards
time (t→ −∞), the trajectories become parallel to the fast eigendirection.

If we reverse all the arrows in igure 5.2. , we obtain a typical phase
portrait for an nsta le node. !

a ple .2.
What happens if the eigenvalues are com le numbers
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Fi ure .2.

ol tion If the eigenvalues are complex, the xed point is either a enter
igure 5.2. a or a s iral igure 5.2. b . We’ve already seen an example

of a center in the simple harmonic oscillator of Section 5.1 the origin is sur-
rounded by a family of closed orbits. ote that centers are ne trally sta le,
since nearby trajectories are neither attracted to nor repelled from the xed
point. A spiral would occur if the harmonic oscillator were lightly damped.
Then the trajectory would just fail to close, because the oscillator loses a bit
of energy on each cycle.

Fi ure .2.

To justify these statements, recall that the eigenvalues are

λ1,2 =
1

2

(
τ ±

√
τ2 − 4∆

)
.

Thus complex eigenvalues occur when

τ2 − 4∆ < 0.

To simplify the notation, let’s write the eigenvalues as

λ1,2 = α± iω

where
α = τ/2, ω =

1

2

√
4∆− τ2 .
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since nearby trajectories are neither attracted to nor repelled from the xed
point. A spiral would occur if the harmonic oscillator were lightly damped.
Then the trajectory would just fail to close, because the oscillator loses a bit
of energy on each cycle.

Fi ure .2.

To justify these statements, recall that the eigenvalues are

λ1,2 =
1

2

(
τ ±

√
τ2 − 4∆

)
.

Thus complex eigenvalues occur when

τ2 − 4∆ < 0.

To simplify the notation, let’s write the eigenvalues as

λ1,2 = α± iω

where
α = τ/2, ω =

1

2

√
4∆− τ2 .

inear ystems 1

By assumption, ω ̸= 0. Then the eigenvalues are distinct and so the general
solution is still given by

t(t) = c1e
λ1tp1 + c2e

λ2tp2.

But now the c’s and p’s are com le , since the λ’s are. This means that t(t)
involves linear combinations of e(α±iω)t. By uler’s formula, eiωt = cosωt +
i sinωt. Hence t(t) is a combination of terms involving eαt cosωt and eαt sinωt.
Such terms represent exponentially decayin oscillations if α = e(λ) < 0 and
rowin oscillations if α > 0. The corresponding xed points are sta le and
nsta le s irals, respectively. igure 5.2. b shows the stable case.
If the eigenvalues are pure imaginary (α = 0), then all the solutions are

periodic with period T = 2π/ω. The oscillations have xed amplitude and the
xed point is a center.

or both centers and spirals, it’s easy to determine whether the rotation is
clockwise or counterclockwise just compute a few vectors in the vector eld
and the sense of rotation should be obvious. !

a ple .2.
In our analysis of the general case, we have been assuming that the eigenvalues
are distinct. What happens if the eigenvalues are e al

ol tion Suppose λ1 = λ2 = λ. There are two possibilities: either there
are two independent eigenvectors corresponding to λ, or there’s only one.

If there are two independent eigenvectors, then they span the plane and
so e ery ector is an ei en ector wit t is same ei en al e λ. To see this,
write an arbitrary vector t0 as a linear combination of the two eigenvectors:
t0 = c1p1 + c2p2. Then

At0 = A(c1p1 + c2p2) = c1λp1 + c2λp2 = λt0

so t0 is also an eigenvector with eigenvalue λ. Since multiplication by A simply
stretches every vector by a factor λ, the matrix must be a multiple of the
identity:

A =

(
λ 0
0 λ

)
.

Then if λ ̸= 0, all trajectories are straight lines through the origin (t(t) =
eλtt0) and the xed point is a star node igure 5.2.5 . n the other hand,
if λ = 0, the whole plane is lled with xed points o surprise the system
is ṫ = y.

The other possibility is that there’s only one eigenvector more accu-
rately, the eigenspace corresponding to λ is one-dimensional. or example,
any matrix of the form A =

(
λ b
0 λ

)
, with b ̸= 0 has only a one-dimensional

eigenspace xercise 5.2.11 .
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Fi ure .2.

Fi ure .2.

When there’s only one eigendirection, the xed point is a de enerate
node. A typical phase portrait is shown in igure 5.2. . As t→ +∞ and also
as t→ −∞, all trajectories become parallel to the one available eigendirection.

A good way to think about the degenerate node is to imagine that it has
been created by deforming an ordinary node. The ordinary node has two inde-
pendent eigendirections all trajectories are parallel to the slow eigendirection
as t→∞, and to the fast eigendirection as t→ −∞ igure 5.2. a .

Fi ure .2.

ow suppose we start changing the parameters of the system in such a way
that the two eigendirections are scissored together. Then some of the trajecto-
ries will get squashed in the collapsing region between the two eigendirections,
while the surviving trajectories get pulled around to form the degenerate node

igure 5.2. b .
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Another way to get intuition about this case is to realize that the degen-
erate node is on the orderline etween a s iral and a node The trajectories
are trying to wind around in a spiral, but they don’t quite make it. !

Classi cation o Fi ed oints
By now you’re probably tired of all the examples and ready for a simple
classi cation scheme. Happily, there is one. We can show the type and stability
of all the di erent xed points on a single diagram igure 5.2. .

Fi ure .2.

The axes are the trace τ and the determinant ∆ of the matrix A. All of
the information in the diagram is implied by the following formulas:

λ1,2 =
1

2

(
τ ±

√
τ2 − 4∆

)
, ∆ = λ1λ2, τ = λ1 + λ2.

The rst equation is just 5 . The second and third can be obtained by writing
the characteristic equation in the form (λ− λ1)(λ− λ2) = λ2 − τλ+∆ = 0.

To arrive at igure 5.2. , we make the following observations:
If ∆ < 0, the eigenvalues are real and have opposite signs hence the xed

point is a saddle oint.
If ∆ > 0, the eigenvalues are either real with the same sign nodes , or

complex conjugate s irals and centers . odes satisfy τ2−4∆ > 0 and spirals
satisfy τ2 − 4∆ < 0. The parabola τ2 − 4∆ = 0 is the borderline between
nodes and spirals star nodes and degenerate nodes live on this parabola. The
stability of the nodes and spirals is determined by τ . When τ < 0, both
eigenvalues have negative real parts, so the xed point is stable. nstable
spirals and nodes have τ > 0. eutrally stable centers live on the borderline
τ = 0, where the eigenvalues are purely imaginary.
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If ∆ = 0, at least one of the eigenvalues is zero. Then the origin is not an
isolated xed point. There is either a whole line of xed points, as in igure
5.1.5d, or a plane of xed points, if A = 0.

igure 5.2. shows that saddle points, nodes, and spirals are the major
types of xed points they occur in large open regions of the (∆, τ) plane.
Centers, stars, degenerate nodes, and non-isolated xed points are order-
line ases that occur along curves in the (∆, τ) plane. f these borderline
cases, centers are by far the most important. They occur very commonly in
frictionless mechanical systems where energy is conserved.

a ple .2.

Classify the xed point t∗ = y for the system ṫ = At, where A =

(
1 2

3 4

)
.

ol tion The matrix has ∆ = −2 hence the xed point is a saddle point. !

a ple .2.

edo xample 5.2. for A =

(
2 1

3 4

)
.

ol tion ow ∆ = 5 and τ = 6. Since ∆ > 0 and τ2 − 4∆ = 16 > 0, the
xed point is a node. It is unstable, since τ > 0. !

. Lo e airs
To arouse your interest in the classi cation of linear systems, we now discuss
a simple model for the dynamics of love a airs Strogatz 1 . The following
story illustrates the idea.

omeo is in love with uliet, but in our version of this story, uliet is a
ckle lover. The more omeo loves her, the more uliet wants to run away

and hide. But when omeo gets discouraged and backs o , uliet begins to
nd him strangely attractive. omeo, on the other hand, tends to echo her:

he warms up when she loves him, and grows cold when she hates him.
et

R(t) = omeo’s love hate for uliet at time t

J(t) = uliet’s love hate for omeo at time t.
ositive values of R, J signify love, negative values signify hate. Then a model

for their star-crossed romance is

Ṙ = aJ

J̇ = −bR

where the parameters a and b are positive, to be consistent with the story.
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