

4	and	We	We	ed t	D ÍY	wes:	hga	ter	Mat	happer	us in	(3	
	ge	mm	Ì,				U						
	1	ake	2 a	fu	nchi	UN	the	rt	13	seing	integr	ated,	
), y ⁽								
		S	- ,	$\int_{x_2}^{x_2}$	f (y	(x) ,	y'(x)) _/ x)	dx				
	Û										Sud	h	
	4	nat	a	ny	func	ztion	1	/(x)) =	S y(x) +	d E(X	()	
	1	mod	u Ce	5 0	lai	ger	i/	tegr	a(em	vtern	
		Xa							7	12			
		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	()	(x)	, 4'1	×),	x) c	Jx		(z fly(x)	y'(x),	x)9X	
		X							Xı				
	7	M US		S	$(\alpha$	=0)	S	al	minim	m,		
		wh								produ			
											ls th	e	
					$\frac{dS}{dx}$	-		= ()	ex	them	ia	
					<u> </u>	' ($\chi = 0$)					

Short Long Derivation
$$S = \int_{x_1}^{x_2} f(y(x), y'(x), x) dx$$

$$S = \int_{x_1}^{x_2} f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x) dx$$

$$\frac{dS}{d\alpha} = \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x) \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x) \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x) \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x) \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x) \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x) \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x) \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x) \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x) \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x) \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x) \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x) \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x) \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x) \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x) \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x) \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x) \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x) \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal{E}(x), y'(x) + \alpha \mathcal{E}(x), x \right] dx$$

$$= \int_{x_1}^{x_2} \frac{d}{d\alpha} \left[f(y(x) + \alpha \mathcal$$

$$\frac{dS}{d\alpha} = \int_{X_{1}}^{X_{2}} \left\{ \frac{df}{dy} \mathcal{E} + \frac{df}{dy}, \mathcal{E}' \right\} dx$$

$$Set the integral to zero,
$$\frac{dS}{d\alpha} = 0$$

$$\int_{X_{1}}^{X_{2}} \left(\mathcal{E} \frac{df}{dy} + \mathcal{E}' \frac{df}{dy'} \right) dx = 0$$

$$\int_{X_{1}}^{X_{2}} \left(\mathcal{E} \frac{df}{dy} + \mathcal{E}' \frac{df}{dy'} \right) dx = 0$$

$$\int_{X_{1}}^{X_{2}} \left(\mathcal{E} \frac{df}{dy} + \mathcal{E}' \frac{df}{dy'} \right) dx = 0$$

$$\int_{X_{1}}^{X_{2}} \int_{X_{2}}^{X_{2}} \frac{df}{dy'} dx = \int_{X_{1}}^{X_{2}} \left(\mathcal{E} \frac{df}{dy'} - \mathcal{E} \frac{d}{dx} \left(\mathcal{E} \frac{df}{dy'} \right) \right) dx = 0$$

$$\int_{X_{1}}^{X_{2}} \left(\mathcal{E} \frac{df}{dy} - \mathcal{E} \frac{d}{dx} \left(\mathcal{E} \frac{df}{dy'} \right) \right) dx = 0$$

$$\int_{X_{1}}^{X_{2}} \left(\mathcal{E} \frac{df}{dy} - \mathcal{E} \frac{d}{dx} \left(\mathcal{E} \frac{df}{dy'} \right) \right) dx = 0$$

$$\int_{X_{1}}^{X_{2}} \left(\mathcal{E} \frac{df}{dy'} - \mathcal{E} \frac{d}{dx} \left(\mathcal{E} \frac{df}{dy'} \right) \right) dx = 0$$$$

ok after all that, $\frac{dS}{dx} = \int_{x_1}^{x_2} Z(x) \left[\frac{df}{dy} - \frac{d}{dx} \left(\frac{df}{dy} \right) \right] dx = 0$ must be the for any E(x) so, Of J (Jf) = 0 Ever -Jy Jx (Jy') = 0 Lagrange egn for ID Return to our line problem $l = \int_{X_1}^{X_2} \int_{1+y'}^{12} dx$ here, $f(y,y',x) = \int_{1+y'}^{2} 27$ now let's apply the Euler-Lagrange

	$\frac{1}{3y} - \frac{1}{3x} \left(\frac{3}{3y'} \right) = 0$
<u>d</u>	$\frac{1}{1} = 0 \qquad \frac{df}{dy_1} = \frac{1}{2} \left(\frac{1}{1} y_1^{(2)} \right) \left(\frac{2y'}{1} \right)$
	$\frac{\partial f}{\partial y'} = \frac{y'}{\int 1+y'^2}$
	$-\frac{2}{4}\left(\frac{y}{1+y^{2}}\right)=0 \qquad y'(x) \text{ function}$ of x punely so $y' = constant$
)V,
	$y' = C\sqrt{1+y'^2}$ $y'^2 = c^2(1+y'^2)$ $y'^2(1-c^2) = c^2$
	$y^{12} = \frac{c^2}{(1-c^2)}$

$$\begin{aligned}
d &= \sqrt{x_1^2 + (y_1^2)^2} & d_2 &= \sqrt{x_2^2 + (y_2^2)^2} & G \\
T &= \frac{1}{V_1} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right)^{1/2} + \frac{1}{V_2} \left(x_2^2 + (y_2^2 - y_1^2)^2 \right)^{1/2} \\
&= \frac{1}{V_1} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right)^{1/2} + \frac{1}{V_2} \left(x_2^2 + (y_2^2 - y_1^2)^2 \right)^{1/2} \\
&= \frac{1}{V_1} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right)^{1/2} + \frac{1}{V_2} \left(x_2^2 + (y_2^2 - y_1^2)^2 \right) \\
&= \frac{1}{V_1} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right)^{1/2} + \frac{1}{V_2} \left(x_2^2 + (y_2^2 - y_1^2)^2 \right) \\
&= \frac{1}{V_1} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right)^{1/2} + \frac{1}{V_2} \left(x_2^2 + (y_2^2 - y_1^2)^2 \right) \\
&= \frac{1}{V_1} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right)^{1/2} + \frac{1}{V_2} \left(x_2^2 + (y_2^2 - y_1^2)^2 \right) \\
&= \frac{1}{V_1} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right)^{1/2} + \frac{1}{V_2} \left(x_2^2 + (y_2^2 - y_1^2)^2 \right) \\
&= \frac{1}{V_1} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right)^{1/2} + \frac{1}{V_2} \left(x_2^2 + (y_2^2 - y_1^2)^2 \right) \\
&= \frac{1}{V_1} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right)^{1/2} + \frac{1}{V_2} \left(x_2^2 + (y_2^2 - y_1^2)^2 \right) \\
&= \frac{1}{V_1} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right)^{1/2} + \frac{1}{V_2} \left(x_2^2 + (y_2^2 - y_1^2)^2 \right) \\
&= \frac{1}{V_1} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right)^{1/2} + \frac{1}{V_2} \left(x_2^2 + (y_2^2 - y_1^2)^2 \right) \\
&= \frac{1}{V_1} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right)^{1/2} + \frac{1}{V_2} \left(x_1^2 + (y_2^2 - y_1^2)^2 \right) \\
&= \frac{1}{V_1} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right)^{1/2} + \frac{1}{V_2} \left(x_2^2 + (y_2^2 - y_1^2)^2 \right) \\
&= \frac{1}{V_1} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right)^{1/2} + \frac{1}{V_2} \left(x_1^2 + (y_2^2 - y_1^2)^2 \right) \\
&= \frac{1}{V_1} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right)^{1/2} + \frac{1}{V_2} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right) \\
&= \frac{1}{V_1} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right)^{1/2} + \frac{1}{V_2} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right) \\
&= \frac{1}{V_1} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right)^{1/2} + \frac{1}{V_2} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right) \\
&= \frac{1}{V_1} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right)^{1/2} + \frac{1}{V_2} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right) \\
&= \frac{1}{V_1} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right)^{1/2} + \frac{1}{V_2} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right) \\
&= \frac{1}{V_1} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right)^{1/2} + \frac{1}{V_2} \left(x_1^2 + (y_1^2 - y_1^2)^2 \right) \\
&= \frac{1}{V_1} \left(x_1^2 + ($$

where $ds = \sqrt{dx^2 + dy^2}$ a generic 8 tepin x dy. 1001 What about v? If this is purely gravitational their, DK+BU=0 So that if Vi=0 then, $\frac{1}{2}MV^2 - \frac{1}{2}M(0)^2 + mg(\Delta y) = 0$ V= J2gsy where sy is the Change in hight over the full This needs a really coordinate system tomake sense.

in this graph then V= Jzgy for any location of along the track. We now write the integral again, $L = \int_{1}^{2} \frac{ds}{\sqrt{1 + 2y^{2}}} \int_{1}^{2y} \sqrt{2y^{2} + 2y^{2}}$ $\sqrt{\sqrt{3x^2+3y^2}} = \sqrt{\left(\frac{3x}{3y}\right)^2+1} \, dy$ let x'= dx/dy like before withy! (dx2+dy2 = x/2+1 dy So Mat, $t = \sqrt{\frac{1}{29}} \int_{0}^{y_{2}} \sqrt{(x')^{2}+1} dy$

We can identify the function,
$$f(x,x',y) = \sqrt{x'+1}$$

$$f(x,x',y) = \sqrt{x'+1}$$

$$\sqrt{y}$$
Now we apply the Euler-Lagrange Equ,
$$\frac{\partial f}{\partial x} = \frac{d}{dy} \left(\frac{\partial f}{\partial x'} \right)$$
Note:
$$\frac{df}{dx} = \frac{d}{dy} \left(\frac{\partial f}{\partial x'} \right)$$
independent of x .
$$\frac{d}{dy} \left(\frac{\partial f}{\partial x'} \right) = 0$$
so
$$\frac{df}{dx'} = \frac{d}{dx'} \left(\frac{x'^2+1}{dx'} \right) = 0$$
So
$$\frac{df}{dx'} = \frac{d}{dx'} \left(\frac{x'^2+1}{dx'} \right) = 0$$
So
$$\frac{df}{dx'} = \frac{d}{dx'} \left(\frac{x'^2+1}{dx'} \right) = 0$$
So
$$\frac{df}{dx'} = \frac{d}{dx'} \left(\frac{x'^2+1}{dx'} \right) = 0$$
So
$$\frac{df}{dx'} = \frac{d}{dx'} \left(\frac{x'^2+1}{dx'} \right) = 0$$
So
$$\frac{df}{dx'} = \frac{d}{dx'} \left(\frac{x'^2+1}{dx'} \right) = 0$$
So
$$\frac{df}{dx'} = \frac{d}{dx'} \left(\frac{x'^2+1}{dx'} \right) = 0$$
So
$$\frac{df}{dx'} = \frac{d}{dx'} \left(\frac{x'^2+1}{dx'} \right) = 0$$
So
$$\frac{df}{dx'} = \frac{d}{dx'} \left(\frac{x'^2+1}{dx'} \right) = 0$$
So
$$\frac{df}{dx'} = \frac{d}{dx'} \left(\frac{x'^2+1}{dx'} \right) = 0$$
So
$$\frac{df}{dx'} = \frac{d}{dx'} \left(\frac{x'^2+1}{dx'} \right) = 0$$
So
$$\frac{df}{dx'} = \frac{d}{dx'} \left(\frac{x'^2+1}{dx'} \right) = 0$$
So
$$\frac{df}{dx'} = \frac{d}{dx'} \left(\frac{x'^2+1}{dx'} \right) = 0$$
So
$$\frac{df}{dx'} = \frac{d}{dx'} \left(\frac{x'^2+1}{dx'} \right) = 0$$
So
$$\frac{df}{dx'} = \frac{d}{dx'} \left(\frac{x'^2+1}{dx'} \right) = 0$$
So
$$\frac{df}{dx'} = \frac{dx'}{dx'} = 0$$
So
$$\frac{df}{dx'} =$$

Square both sides =
$$\int C$$
 $\frac{x}{2}$
 $\frac{x}{2}$

$$X = \int \sqrt{2a-y} \, dy \qquad \text{this gives}$$

$$Y = a \left(1 - \cos\theta\right)$$

$$Y = a \left(1 - \cos\theta\right)$$

$$X(y) \text{ but}$$

$$X(y) = \int \sqrt{2a-y(\theta)} \, dy$$

$$X(\theta) = \int \sqrt{2a-y(\theta)} \, dy$$

$$= a \int \sqrt{(1-\cos\theta)} \, \sin\theta \, d\theta$$

$$= a \int \sqrt{(1-\cos\theta)} \, \sin\theta \, d\theta$$

$$= a \int \sqrt{(1-\cos\theta)^2(1+\cos\theta)^2} \, d\theta$$

$$X(\theta) = a \int \sqrt{(1-\cos\theta)^2(1+\cos\theta)^2} \, d\theta$$

