
Chapter 2
Flows on the Line

2.0 Introduction
In Chapter 1, we introduced the general system

ẋ1 = f1(x1, . . . , xn)
...

ẋn = fn(x1, . . . , xn)

and mentioned that its solutions could be visualized as trajectories flowing
through an n-dimensional phase space with coordinates (x1, . . . , xn). At the
moment, this idea probably strikes you as a mind-bending abstraction. So let’s
start slowly, beginning here on earth with the simple case n = 1. Then we get
a single equation of the form

ẋ = f(x).

Here x(t) is a real-valued function of time t, and f(x) is a smooth real-valued
function of x. We’ll call such equations one-dimensional or first-order
systems.

Before there’s any chance of confusion, let’s dispense with two fussy points
of terminology:

1. The word system is being used here in the sense of a dynamical system,
not in the classical sense of a collection of two or more equations. Thus
a single equation can be a “system.”

2. We do not allow f to depend explicitly on time. Time-dependent or
“nonautonomous” equations of the form ẋ = f(x, t) are more compli-
cated, because one needs two pieces of information, x and t, to predict
the future state of the system. Thus ẋ = f(x, t) should really be re-
garded as a two-dimensional or second-order system, and will therefore
be discussed later in the book.
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2.R � :eoKetric qav o7 hhinFin;
Sictures are often more helpful than formulas for analyzing nonlinear systems.
Here we illustrate this point by a simple example. Along the way we will intro-
duce one of the most basic techniques of dynamics: interTretin; a dizerential
e[mation as a pector }eldX

Consider the following nonlinear dizerential equation:

ẋ = sinx. U1V

To emphasize our point about formulas versus pictures, we have chosen one
of the few nonlinear equations that can be solved in closed form. We separate
the variables and then integrate:

dt =
dx

sinx,

which implies
t =

∫
cscx dx

= − ln | cscx+ cotx|+ C.

To evaluate the constant C, suppose that x = x0 at t 4 y. Then C =
ln | cscx0 + cotx0|. Hence the solution is

t = ln
∣∣∣∣
cscx0 + cotx0

cscx+ cotx

∣∣∣∣ . U2V

This result is exact, but a headache to interpret. 6or example, can you answer
the following questions\

1. Suppose x0 = π/4. .escribe the qualitative features of the solution x(t)
for all t > 0. In particular, what happens as t→∞\

2. 6or an ar#itrary initial condition x0, what is the behavior of x(t) as
t→∞\

Think about these questions for a while, to see that formula U2V is not trans-
parent.

In contrast, a graphical analysis of U1V is clear and simple, as shown in
6igure 2.1.1. We think of t as time, x as the position of an imaginary particle
moving along the real line, and ẋ as the velocity of that particle. Then the
dizerential equation ẋ = sinx represents a pe+tor field on the line: it dictates
the velocity vector ẋ at each x. To sketch the vector }eld, it is convenient to
plot ẋ versus x, and then draw arrows on the x-axis to indicate the corre-
sponding velocity vector at each x. The arrows point to the right when ẋ > 0
and to the left when ẋ < 0.
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the velocity vector ẋ at each x. To sketch the vector }eld, it is convenient to
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Fi;ure 2.R.R

Here’s a more physical way to think about the vector }eld: imagine that
fluid is flowing steadily along the x-axis with a velocity that varies from place
to place, according to the rule ẋ = sinx. As shown in 6igure 2.1.1, the ~or
is to the right when ẋ > 0 and to the left when ẋ < 0. At points where
ẋ = 0, there is no flowc such points are therefore called fited Toints. uou can
see that there are two kinds of }xed points in 6igure 2.1.1: solid black dots
represent sta#le }xed points Uoften called attractors or sinFs, because the flow
is toward themV and open circles represent mnsta#le }xed points Ualso known
as reTellers or somrcesV.

Armed with this picture, we can now easily understand the solutions to
the dizerential equation ẋ = sinx. We just start our imaginary particle at
x0 and watch how it is carried along by the flow. This approach allows us to
answer the questions above as follows:

1. 6igure 2.1.1 shows that a particle starting at x0 4 πf9 moves to the right
faster and faster until it crosses x = πf2 Uwhere sinx reaches its maxi-
mumV. Then the particle starts slowing down and eventually approaches
the stable }xed point x 4 π from the left. Thus, the qualitative form of
the solution is as shown in 6igure 2.1.2.

Fi;ure 2.R.2

Lote that the curve is concave up at }rst, and then concave downc this
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change in concavity corresponds to the initial acceleration for x < πf2,
followed by the deceleration toward x 4 π.

2. The same reasoning applies to any initial condition x0. 6igure 2.1.1
shows that if ẋ > 0 initially, the particle heads to the right and asymp-
totically approaches the nearest stable }xed point. Similarly, if ẋ < 0
initially, the particle approaches the nearest stable }xed point to its left.
If ẋ = 0, then x remains constant. The qualitative form of the solution
for any initial condition is sketched in 6igure 2.1.j.

Fi;ure 2.R.j

In all honesty, we should admit that a picture can’t tell us certain [mantitatipe
things: for instance, we don’t know the time at which the speed |ẋ| is greatest.
But in many cases [malitatipe information is what we care about, and then
pictures are }ne.

2.2 Fited Soints and ata#ilitv
The ideas developed in the last section can be extended to any one-dimensional
system ẋ = f(x). We just need to draw the graph of f(x) and then use it to
sketch the vector }eld on the real line Uthe x-axis in 6igure 2.2.1V.
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Fi;ure 2.2.R

As before, we imagine that a fluid is flowing along the real line with a local
velocity f(x). This imaginary fluid is called the phase fluid, and the real line is
the phase space. The flow is to the right where f(x) > 0 and to the left where
f(x) < 0. To }nd the solution to ẋ = f(x) starting from an arbitrary initial
condition x0, we place an imaginary particle Uknown as a T?ase TointV at x0

and watch how it is carried along by the flow. As time goes on, the phase point
moves along the x-axis according to some function x(t). This function is called
the traDe+tory based at x0, and it represents the solution of the dizerential
equation starting from the initial condition x0. A picture like 6igure 2.2.1,
which shows all the qualitatively dizerent trajectories of the system, is called
a T?ase Tortrait.

The appearance of the phase portrait is controlled by the }xed points
x∗, de}ned by f(x∗) 4 yc they correspond to stagnation points of the flow.
In 6igure 2.2.1, the solid black dot is a stable }xed point Uthe local flow is
toward itV and the open dot is an unstable }xed point Uthe flow is away from
itV.

In terms of the original dizerential equation, }xed points represent e[mi-
li#rimm solutions Usometimes called steady, constant, or rest solutions, since
if x 4 x∗ initially, then x(t) = x∗ for all timeV. An equilibrium is de}ned to
be stable if all su{ciently small disturbances away from it damp out in time.
Thus stable equilibria are represented geometrically by stable }xed points.
Conversely, unstable equilibria, in which disturbances grow in time, are rep-
resented by unstable }xed points.

1taKple 2.2.R,
6ind all the }xed points for ẋ = x2 − 1, and classify their stability.

aolmtion, Here f(x) = x2−1. To }nd the }xed points, we set f(x∗) = 0 and
solve for x∗. Thus x∗ = ±1. To determine stability, we plot x2 − 1 and then
sketch the vector }eld U6igure 2.2.2V. The flow is to the right where x2−1 > 0
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and to the left where x2 − 1 < 0. Thus x∗ = −1 is stable, and x∗ = 1 is
unstable. !

Fi;ure 2.2.2

Lote that the de}nition of stable equilibrium is based on small distur-
bancesc certain large disturbances may fail to decay. In 1xample 2.2.1, all
small disturbances to x∗ = −1 will decay, but a large disturbance that sends
x to the right of x = 1 will not decayěin fact, the phase point will be re-
pelled out to +∞. To emphasize this aspect of stability, we sometimes say
that x∗ = −1 is locally sta#le, but not globally stable.

1taKple 2.2.2,
Consider the electrical circuit shown in 6igure 2.2.j.

Fi;ure 2.2.j

A resistor R and a capacitor C are in series with a battery of constant dc
voltage V0. Suppose that the switch is closed at t = 0, and that there is no
charge on the capacitor initially. Get Q(t) denote the charge on the capacitor
at time t ≥ 0. Sketch the graph of Q(t).
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aolmtion, This type of circuit problem is probably familiar to you. It is
governed by linear equations and can be solved analytically, but we prefer to
illustrate the geometric approach.

6irst we write the circuit equations. As we go around the circuit, the
total voltage drop must equal zeroc hence −V0+RI+Q/C = 0, where I is the
current flowing through the resistor. This current causes charge to accumulate
on the capacitor at a rate Q̇ = I. Hence

−V0 +RQ̇+Q/C = 0

which gives
Q̇ = f(Q) =

V0

R
− Q

RC
.

The graph of f(Q) is a straight line with a negative slope U6igure 2.2.9V.

Fi;ure 2.2.9

The corresponding vector }eld has a }xed point where f(Q) = 0, which occurs
at Q∗ = CV0. The flow is to the right where f(Q) > 0 and to the left where
f(Q) < 0. Thus the flow is always toward Q∗c it is a sta#le }xed point. In
fact, it is ;lo#ally sta#le, in the sense that it is approached from all initial
conditions.

To sketch Q(t), we start a phase point at the origin of 6igure 2.2.9 and
imagine how it would move. The flow carries the phase point monotonically
toward Q∗. Its speed Q̇ decreases linearly as it approaches the }xed pointc
therefore Q(t) is increasing and concave down, as shown in 6igure 2.2.5. !

1taKple 2.2.j,
Sketch the phase portrait corresponding to ẋ = x− cosx, and determine the
stability of all the }xed points.

aolmtion, Pne approach would be to plot the function f(x) = x−cosx and
then sketch the associated vector }eld. This method is valid, but it requires
you to }gure out what the graph of x− cosx looks like.

There’s an easier solution, which exploits the fact that we know how to
graph y = x and y = cosx seTaratelyX We plot both graphs on the same axes
and then observe that they intersect in exactly one point U6igure 2.2.eV.
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Fi;ure 2.2.8

This intersection corresponds to a }xed point, since x∗ = cosx∗ and there-
fore f(x∗) 4 y. Joreover, when the line lies above the cosine curve, we have
x > cosx and so ẋ > 0: the flow is to the right. Similarly, the flow is to the
left where the line is below the cosine curve.

Fi;ure 2.2.e

Hence x∗ is the only }xed point, and it is unstable. Lote that we can classify
the stability of x∗, even though we don’t have a formula for x∗ itself5 !

2.j Sopulation :rowth
The simplest model for the growth of a population of organisms is Ṅ = rN,
where N(t) is the population at time t, and r > 0 is the growth rate. This
model predicts exponential growth: N(t) = N0ert, where N0 is the population
at t = 0.

Pf course such exponential growth cannot go on forever. To model
the ezects of overcrowding and limited resources, population biologists and



22 Lonlinear .ynamics and *?aos

Fi;ure 2.2.8

This intersection corresponds to a }xed point, since x∗ = cosx∗ and there-
fore f(x∗) 4 y. Joreover, when the line lies above the cosine curve, we have
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demographers often assume that the per capita growth rate Ṅ/N decreases
when N becomes su{ciently large, as shown in 6igure 2.j.1. 6or small N,
the growth rate equals r, just as before. However, for populations larger than
a certain +arryin; +aTa+ity K, the growth rate actually becomes negativec
the death rate is higher than the birth rate.

Fi;ure 2.j.R

A mathematically convenient way to incorporate these ideas is to assume
that the per capita growth rate Ṅ/N decreases linearly with N U6igure 2.j.2V.

Fi;ure 2.j.2

This leads to the lo;isti+ e[mation

Ṅ = rN

(
1− N

K

)
,

}rst suggested to describe the growth of human populations by oerhulst in
13j3. This equation can be solved analytically U1xercise 2.j.1V but once again
we prefer a graphical approach. We plot Ṅ versus N to see what the vector
}eld looks like. Lote that we plot only N ≥ 0, since it makes no sense to think
about a negative population U6igure 2.j.jV.

6ixed points occur at N∗ = 0 and N∗ = K, as found by setting Ṅ = 0 and
solving for N . By looking at the flow in 6igure 2.j.j, we see that N∗ 4 y is an
unstable }xed point and N∗ = K is a stable }xed point. In biological terms,
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Fi;ure 2.j.j

N = 0 is an unstable equilibrium: a small population will grow exponentially
fast and run away from N = 0. Pn the other hand, if N is disturbed slightly
from K, the disturbance will decay monotonically and N(t)→ K as t→∞.

In fact, 6igure 2.j.j shows that if we start a phase point at any N0 > 0, it
will always flow toward N = K. Hence t?e ToTmlation always aTTroac?es t?e
carryin; caTacityX

The only exception is if N0 = 0c then there’s nobody around to start repro-
ducing, and so N = 0 for all time. UThe model does not allow for spontaneous
generation5V

6igure 2.j.j also allows us to deduce the qualitative shape of the solutions.
6or example, if N0 < K/2, the phase point moves faster and faster until it
crosses N = K/2, where the parabola in 6igure 2.j.j reaches its maximum.
Then the phase point slows down and eventually creeps toward N = K. In
biological terms, this means that the population initially grows in an acceler-
ating fashion, and the graph of N(t) is concave up. But after N = K/2, the
derivative Ṅ begins to decrease, and so N(t) is concave down as it asymp-
totes to the horizontal line N = K U6igure 2.j.9V. Thus the graph of N(t) is
S-shaped or si;moid for N0 < K/2.

Something qualitatively dizerent occurs if the initial condition N0 lies
between Ef 2 and Kc now the solutions are decelerating from the start. Hence
these solutions are concave down for all t. If the population initially exceeds
the carrying capacity (N0 > K), then N(t) decreases toward N = K and is
concave up. 6inally, if N0 4 y or N0 = K, then the population stays constant.

Criti[ue o7 the Lo;istic Jodel
Before leaving this example, we should make a few comments about the bio-
logical validity of the logistic equation. The algebraic form of the model is not
to be taken literally. The model should really be regarded as a metaphor for
populations that have a tendency to grow from zero population up to some
carrying capacity K.
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Fi;ure 2.j.9

Priginally a much stricter interpretation was proposed, and the model was
argued to be a universal law of growth USearl 1N2dV. The logistic equation was
tested in laboratory experiments in which colonies of bacteria, yeast, or other
simple organisms were grown in conditions of constant climate, food supply,
and absence of predators. 6or a good review of this literature, see Erebs U1Nd2,
pp. 1NyĜ2yyV. These experiments often yielded sigmoid growth curves, in some
cases with an impressive match to the logistic predictions.

Pn the other hand, the agreement was much worse for fruit flies, flour bee-
tles, and other organisms that have complex life cycles involving eggs, larvae,
pupae, and adults. In these organisms, the predicted asymptotic approach to
a steady carrying capacity was never observeděinstead the populations ex-
hibited large, persistent fluctuations after an initial period of logistic growth.
See Erebs U1Nd2V for a discussion of the possible causes of these fluctuations,
including age structure and time-delayed ezects of overcrowding in the popu-
lation.

6or further reading on population biology, see Sielou U1NeNV or Jay U1N31V.
1delsteinĜEeshet U1N33V and Jurray U2yy2, 2yyjV are excellent textbooks on
mathematical biology in general.

2.9 Linear ata#ilitv �nalvsis
So far we have relied on graphical methods to determine the stability of }xed
points. 6requently one would like to have a more quantitative measure of sta-
bility, such as the rate of decay to a stable }xed point. This sort of information
may be obtained by linearixin; about a }xed point, as we now explain.
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