Chapter 2

Flows on the Line

2.0 Introduction

In Chapter 1, we introduced the general system

1= fi(z,...,xp)

Ty = fn(xlv"'vxn)

and mentioned that its solutions could be visualized as trajectories flowing
through an n-dimensional phase space with coordinates (z1,...,2,). At the
moment, this idea probably strikes you as a mind-bending abstraction. So let’s
start slowly, beginning here on earth with the simple case n = 1. Then we get
a single equation of the form

= f(x).

Here z(t) is a real-valued function of time ¢, and f(x) is a smooth real-valued
function of x. We'll call such equations one-dimensional or first-order
systems.

Before there’s any chance of confusion, let’s dispense with two fussy points
of terminology:

1. The word system is being used here in the sense of a dynamical system,
not in the classical sense of a collection of two or more equations. Thus
a single equation can be a “system.”

2. We do not allow f to depend explicitly on time. Time-dependent or
“nonautonomous” equations of the form & = f(x,t) are more compli-
cated, because one needs two pieces of information, z and t, to predict
the future state of the system. Thus & = f(x,t) should really be re-
garded as a two-dimensional or second-order system, and will therefore
be discussed later in the book.
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16 Nonlinear Dynamics and Chaos

2.1 A Geometric Way of Thinking

Pictures are often more helpful than formulas for analyzing nonlinear systems.
Here we illustrate this point by a simple example. Along the way we will intro-
duce one of the most basic techniques of dynamics: interpreting a differential
equation as a vector field.

Consider the following nonlinear differential equation:

& =sinz. (1)

To emphasize our point about formulas versus pictures, we have chosen one
of the few nonlinear equations that can be solved in closed form. We separate
the variables and then integrate:

dx

sinx’

dt =

which implies
t= [ cscx dx
= —In|cscx + cotz| + C.

To evaluate the constant C, suppose that x = zg at ¢ = 0. Then C =
In|csczg + cot xg|. Hence the solution is

csc xg + cot xg
cscx + cotw

t=1In

(2)

This result is exact, but a headache to interpret. For example, can you answer
the following questions?

1. Suppose xg = 7/4. Describe the qualitative features of the solution ()
for all ¢ > 0. In particular, what happens as t — oo?

2. For an arbitrary initial condition xg, what is the behavior of z(t) as
t — 007

Think about these questions for a while, to see that formula (2) is not trans-
parent.

In contrast, a graphical analysis of (1) is clear and simple, as shown in
Figure 2.1.1. We think of ¢ as time, = as the position of an imaginary particle
moving along the real line, and & as the velocity of that particle. Then the
differential equation & = sin x represents a vector field on the line: it dictates
the velocity vector & at each x. To sketch the vector field, it is convenient to
plot & versus z, and then draw arrows on the x-axis to indicate the corre-
sponding velocity vector at each x. The arrows point to the right when & > 0
and to the left when = < 0.
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Figure 2.1.1

Here’s a more physical way to think about the vector field: imagine that
fluid is flowing steadily along the z-axis with a velocity that varies from place
to place, according to the rule £ = sinz. As shown in Figure 2.1.1, the flow
is to the right when & > 0 and to the left when & < 0. At points where
& = 0, there is no flow; such points are therefore called fixed points. You can
see that there are two kinds of fixed points in Figure 2.1.1: solid black dots
represent stable fixed points (often called attractors or sinks, because the flow
is toward them) and open circles represent unstable fixed points (also known
as repellers or sources).

Armed with this picture, we can now easily understand the solutions to
the differential equation & = sinxz. We just start our imaginary particle at
xo and watch how it is carried along by the flow. This approach allows us to
answer the questions above as follows:

1. Figure 2.1.1 shows that a particle starting at o = 7/4 moves to the right
faster and faster until it crosses * = 7/2 (where sin z reaches its maxi-
mum). Then the particle starts slowing down and eventually approaches
the stable fixed point x = « from the left. Thus, the qualitative form of
the solution is as shown in Figure 2.1.2.
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Figure 2.1.2

Note that the curve is concave up at first, and then concave down; this
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change in concavity corresponds to the initial acceleration for x < 7/2,
followed by the deceleration toward x = 7.

2. The same reasoning applies to any initial condition zg. Figure 2.1.1
shows that if £ > 0 initially, the particle heads to the right and asymp-
totically approaches the nearest stable fixed point. Similarly, if £ < 0
initially, the particle approaches the nearest stable fixed point to its left.
If £ = 0, then = remains constant. The qualitative form of the solution
for any initial condition is sketched in Figure 2.1.3.
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Figure 2.1.3

In all honesty, we should admit that a picture can’t tell us certain quantitative
things: for instance, we don’t know the time at which the speed |Z| is greatest.
But in many cases qualitative information is what we care about, and then
pictures are fine.

2.2 Fixed Points and Stability

The ideas developed in the last section can be extended to any one-dimensional
system & = f(x). We just need to draw the graph of f(z) and then use it to
sketch the vector field on the real line (the z-axis in Figure 2.2.1).
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Figure 2.2.1

As before, we imagine that a fluid is flowing along the real line with a local
velocity f(x). This imaginary fluid is called the phase fluid, and the real line is
the phase space. The flow is to the right where f(z) > 0 and to the left where
f(z) < 0. To find the solution to & = f(x) starting from an arbitrary initial
condition z(, we place an imaginary particle (known as a phase point) at xg
and watch how it is carried along by the flow. As time goes on, the phase point
moves along the x-axis according to some function z(t). This function is called
the trajectory based at xg, and it represents the solution of the differential
equation starting from the initial condition xy. A picture like Figure 2.2.1,
which shows all the qualitatively different trajectories of the system, is called
a phase portrait.

The appearance of the phase portrait is controlled by the fixed points
x*, defined by f(x*) = 0; they correspond to stagnation points of the flow.
In Figure 2.2.1, the solid black dot is a stable fixed point (the local flow is
toward it) and the open dot is an unstable fixed point (the flow is away from
it).

In terms of the original differential equation, fixed points represent equi-
librium solutions (sometimes called steady, constant, or rest solutions, since
if x = a* initially, then x(t) = «* for all time). An equilibrium is defined to
be stable if all sufficiently small disturbances away from it damp out in time.
Thus stable equilibria are represented geometrically by stable fixed points.
Conversely, unstable equilibria, in which disturbances grow in time, are rep-
resented by unstable fixed points.

Example 2.2.1: ‘
Find all the fixed points for & = 22 — 1, and classify their stability.
Solution: Here f(x) = 22 —1. To find the fixed points, we set f(z*) = 0 and

solve for z*. Thus #* = £1. To determine stability, we plot 2 — 1 and then
sketch the vector field (Figure 2.2.2). The flow is to the right where 2% —1 > 0
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and to the left where 22 — 1 < 0. Thus z* = —1 is stable, and z* = 1 is
unstable. m
x
f=x"-1
x
Figure 2.2.2

Note that the definition of stable equilibrium is based on small distur-
bances; certain large disturbances may fail to decay. In Example 2.2.1, all
small disturbances to z* = —1 will decay, but a large disturbance that sends
x to the right of x = 1 will not decay—in fact, the phase point will be re-
pelled out to +o00. To emphasize this aspect of stability, we sometimes say
that «* = —1 is locally stable, but not globally stable.

Example 2.2.2: ‘
Consider the electrical circuit shown in Figure 2.2.3.
1
R
+ Ol —
Yo
Figure 2.2.3

A resistor R and a capacitor C are in series with a battery of constant dc
voltage Vy. Suppose that the switch is closed at ¢ = 0, and that there is no
charge on the capacitor initially. Let Q(¢) denote the charge on the capacitor
at time ¢ > 0. Sketch the graph of Q(t).
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Solution: This type of circuit problem is probably familiar to you. It is
governed by linear equations and can be solved analytically, but we prefer to
illustrate the geometric approach.

First we write the circuit equations. As we go around the circuit, the
total voltage drop must equal zero; hence —Vy+ RI+@Q/C = 0, where [ is the
current flowing through the resistor. This current causes charge to accumulate
on the capacitor at a rate Q = I. Hence

—Vo+RQ+Q/C=0

which gives

: v
Q=@ ="2 L

The graph of f(Q) is a straight line with a negative slope (Figure 2.2.4).
0
f(Q N

Figure 2.2.4

The corresponding vector field has a fixed point where f(Q) = 0, which occurs
at Q@* = C'Vy. The flow is to the right where f(Q) > 0 and to the left where
f(@) < 0. Thus the flow is always toward Q*; it is a stable fixed point. In
fact, it is globally stable, in the sense that it is approached from all initial
conditions.

To sketch Q(t), we start a phase point at the origin of Figure 2.2.4 and
imagine how it would move. The flow carries the phase point monotonically
toward Q*. Its speed @ decreases linearly as it approaches the fixed point;
therefore Q(t) is increasing and concave down, as shown in Figure 2.2.5. m

‘ Example 2.2.3: ‘
Sketch the phase portrait corresponding to © = = — cosz, and determine the
stability of all the fixed points.

Solution: One approach would be to plot the function f(x) = z—cosz and
then sketch the associated vector field. This method is valid, but it requires
you to figure out what the graph of x — cosx looks like.

There’s an easier solution, which exploits the fact that we know how to
graph y = z and y = cosx separately. We plot both graphs on the same axes
and then observe that they intersect in exactly one point (Figure 2.2.6).




22 Nonlinear Dynamics and Chaos
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Figure 2.2.5

This intersection corresponds to a fixed point, since z* = cos * and there-
fore f(z*) = 0. Moreover, when the line lies above the cosine curve, we have
x > cosx and so & > 0: the flow is to the right. Similarly, the flow is to the
left where the line is below the cosine curve.
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Figure 2.2.6

Hence z* is the only fixed point, and it is unstable. Note that we can classify
the stability of #*, even though we don’t have a formula for x* itself! m

2.3 Population Growth

The simplest model for the growth of a population of organisms is N = rN,
where N (t) is the population at time ¢, and r > 0 is the growth rate. This
model predicts exponential growth: N(t) = Nge™, where Ny is the population
att =0.

Of course such exponential growth cannot go on forever. To model
the effects of overcrowding and limited resources, population biologists and
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demographers often assume that the per capita growth rate N /N decreases
when N becomes sufficiently large, as shown in Figure 2.3.1. For small N,
the growth rate equals 7, just as before. However, for populations larger than
a certain carrying capacity K, the growth rate actually becomes negative;
the death rate is higher than the birth rate.

Growth rate

r

Figure 2.3.1

A mathematically convenient way to incorporate these ideas is to assume
that the per capita growth rate N /N decreases linearly with N (Figure 2.3.2).

Growth rate

r

,\N
Figure 2.3.2

This leads to the logistic equation

. N
N =rN (1 K> ,

first suggested to describe the growth of human populations by Verhulst in
1838. This equation can be solved analytically (Exercise 2.3.1) but once again
we prefer a graphical approach. We plot N versus N to see what the vector
field looks like. Note that we plot only N > 0, since it makes no sense to think
about a negative population (Figure 2.3.3).

Fixed points occur at N* = 0 and N* = K, as found by setting N =0 and
solving for V. By looking at the flow in Figure 2.3.3, we see that N* = 0 is an
unstable fixed point and N* = K is a stable fixed point. In biological terms,
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K/2 K

Figure 2.3.3

N = 0 is an unstable equilibrium: a small population will grow exponentially
fast and run away from N = 0. On the other hand, if N is disturbed slightly
from K, the disturbance will decay monotonically and N (t) — K as t — oc.

In fact, Figure 2.3.3 shows that if we start a phase point at any Ny > 0, it
will always flow toward N = K. Hence the population always approaches the
carrying capacity.

The only exception is if Ny = 0; then there’s nobody around to start repro-
ducing, and so N = 0 for all time. (The model does not allow for spontaneous
generation!)

Figure 2.3.3 also allows us to deduce the qualitative shape of the solutions.
For example, if Ny < K /2, the phase point moves faster and faster until it
crosses N = K /2, where the parabola in Figure 2.3.3 reaches its maximum.
Then the phase point slows down and eventually creeps toward N = K. In
biological terms, this means that the population initially grows in an acceler-
ating fashion, and the graph of N(t) is concave up. But after N = K /2, the
derivative N begins to decrease, and so N (t) is concave down as it asymp-
totes to the horizontal line N = K (Figure 2.3.4). Thus the graph of N(t) is
S-shaped or sigmoid for Ny < K /2.

Something qualitatively different occurs if the initial condition Ny lies
between K/ 2 and K; now the solutions are decelerating from the start. Hence
these solutions are concave down for all t. If the population initially exceeds
the carrying capacity (Ny > K), then N(t) decreases toward N = K and is
concave up. Finally, if Nyo = 0 or Ny = K, then the population stays constant.

Critique of the Logistic Model

Before leaving this example, we should make a few comments about the bio-
logical validity of the logistic equation. The algebraic form of the model is not
to be taken literally. The model should really be regarded as a metaphor for
populations that have a tendency to grow from zero population up to some
carrying capacity K.
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Figure 2.3.4

Originally a much stricter interpretation was proposed, and the model was
argued to be a universal law of growth (Pearl 1927). The logistic equation was
tested in laboratory experiments in which colonies of bacteria, yeast, or other
simple organisms were grown in conditions of constant climate, food supply,
and absence of predators. For a good review of this literature, see Krebs (1972,
pp. 190—200). These experiments often yielded sigmoid growth curves, in some
cases with an impressive match to the logistic predictions.

On the other hand, the agreement was much worse for fruit flies, flour bee-
tles, and other organisms that have complex life cycles involving eggs, larvae,
pupae, and adults. In these organisms, the predicted asymptotic approach to
a steady carrying capacity was never observed—instead the populations ex-
hibited large, persistent fluctuations after an initial period of logistic growth.
See Krebs (1972) for a discussion of the possible causes of these fluctuations,
including age structure and time-delayed effects of overcrowding in the popu-
lation.

For further reading on population biology, see Pielou (1969) or May (1981).
Edelstein-Keshet (1988) and Murray (2002, 2003) are excellent textbooks on
mathematical biology in general.

2.4 Linear Stability Analysis

So far we have relied on graphical methods to determine the stability of fixed
points. Frequently one would like to have a more quantitative measure of sta-
bility, such as the rate of decay to a stable fixed point. This sort of information
may be obtained by linearizing about a fixed point, as we now explain.
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