Driving the Uscillator We've seen that we can get different ustion with different damping of the SHO $\chi + Z \beta \dot{\chi} + \omega_0^2 \chi = 0$ there the relative strengths of p² aw,² affect the type of istin we observed. But the motion always decays because the damping removes energy from the system. What if we kept putting energy in. $=$ nter Driven Uscillations μ called Here we add time dependant l'utorie α $k = \frac{1}{2}$ A "driver"

In terms of the quantities above, this differential equation is readily written $mx + bx + ky = F(1)$ Denoting $F(t)/w = f(t)$ unit was $m = f(f)$ only u ass $\chi^2 + 2px + \omega_0^2x = f(t)$ 10 driven
oscillator $w_i + h \quad w_0 = h/n \quad 478 = h/n$ Note: this differential equation remeries linear Why? Because the operations on K(+) are linear Linearity of Differential Equations A linear differential equ has many nice pp erties \implies in particular, superposition of solutions of uniqueness of solutions

Effect on Solutions? B/C D is a linear operator, (1) $b(ax) = a Dx$ $(2) D(x_1+x_2) = Dx_1+Dx_2$ (3) $D(ax_1+bx_2) = aDx_1+bDx_2$ For $Dx = f$, we have to be careful. Assure there's a solution to the Monogeneous differential Egu, $Ux_n=0$ where $\chi_h(t)$ is the homogeneous solution, then this solution can

Moneover, Xn(+) satisfies two nutnous (6) set by initial conditions. So xp will not depend on ICs. However, it is particular to the driver, $f(t)$ Sinusoidal Driving Let $f(t) = f_0 cos(\omega t)$ Note $\omega \neq \omega_0$ So that, $x^2 + 2\beta x + \omega^2 x = \int_0^1 \cos(\omega t)$ $\int f(x) = f_0 \sin(\omega_0 t)$ then, \mathbf{i}^{\bullet} + Zp \mathbf{i}^{\bullet} + ω_{\circ}^{2} = \mathbf{j}° sin(u+) is the valid Diffy Q. We cleverly combine them with a linear operation

 $let Z(+)=\chi(+)+i y(t)$ then $f(t) = \int_{0}^{t} (cos(\omega t) + i sin(\omega t))$ $f(t) = \int_0^t e^{i\omega t}$ Thus we seek the particular sola to, $\ddot{z} + 2\beta \dot{z} + \omega_0^2 z = \int_0^1 e^{i\omega t}$ Note C is undetermined they $z(t) = Ce^{i\omega t}$ but it wust not be set by initial conditions. $\frac{1}{2}+2\beta z+\omega^{2}z=fc^{i\omega t}$ $-w^{2}Ce^{i\omega t}+2ip\omega Ce^{i\omega t}+w^{2}Ce^{i\omega t}=f_{0}e^{i\omega t}$ $(-\omega^2 + 2i\beta\omega + \omega^2)$ Ce^{iwt} = f, e^{iwt}

We proposed a zuthin
$$
Z(t) = Ce^{i\omega t}
$$

\nwhich became $Z(t) = He^{-i\xi i\omega t}$
\n $Z(t) = He^{i(\omega t - s)}$
\n $Z(t) = A cos(\omega t - s)$ (particular
\n $A(t) = A cos(\omega t - s)$ (particular
\n $A(t) = X_{\rho}(t) + X_{h}(t)$
\n $X(t) = A cos(\omega t - s) + C_{1}e^{r_{1}t} + C_{2}e^{r_{2}t}$
\nlong-term "transient solutions"
\nbehaviour decay as t→20
\n $cos(\omega t - s) + A_{1}e^{-s\omega t}$
\n $\frac{1}{2}e^{-s\omega t} + \frac{1}{2}e^{-s\omega t}$
\n $X(t) = A cos(\omega t - s) + A_{1}e^{-s\omega t}$
\nwhere $\omega_{1} = \sqrt{w_{2}^{2} - p^{2}} \cdot \frac{p e^{i\omega t}}{2}$

curious thing about long term behavior is that we can observe large auplitudes at particular choices of driving longterm $f(x) = A cos(\omega t - \delta$ where $A =$ $(w_{o}^2-w^2)^2 + 4w^2w^2$ let β be small so that $4 \beta^2 \omega^2$ is small if w_0^2 and ω^2 are far apart, denomis large, thus A² small. i + w_0 ² and w^2 are close, denom is $small, thus A² large¹$ resonant behavior

Case 2: Tune w to fixed we (adjust 5 $\frac{d}{d\omega}\left(\left(w_{o}^{2}-w^{2}\right)^{2}+\frac{d^{2}}{b^{2}}w^{2}\right)=0$ $2(w^2 - \omega^2)(-2\omega) + B\omega^2 = 0$ $-4\omega_0^2\omega+4\omega^3+8\beta^2\omega=0$ $4w(w^2-w^2+2w^2)=0$ $w=0$
 $w^2 = w^2 - zB^2$

No driver $w_a = \sqrt{w^2 - zB^2}$ Max response W_2 2 W_2