
CW 6 PhaseSpace NonlinearDynamics

Thus far we have developed an approach
tosolving for particular trajectories of
different classical mechanics systems

Typically we work to develop the differential

equation that describes how the system
evolves the equation ofmotion
usually of the form
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The approach has been to find ways to
solve these equations for giveninitial
conditions Xo Vo to to get trajectories
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However some equations of motion in factmost
cannot be solved in closed form which is

what gives rise to t duct

Moreover it seems pretty inefficient to
solve for individual trajectories to understand

what the system is doing

Typically we care more about the potential
solutions or qualitatively different solutions
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Integrating ODES
Numerical Integration extends beyond he
use to perform analytical integrals
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We can use them to integrate the

equations of motion

ftp.ffat orderoDE

1 FIXit or X f x t
cool let's say we know where we ane

a time t and we want to predict estivate
where we will be a short time h later

The standard approach involves a Taylor
expansion around t
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Great so for first order ODES

we can use this
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We make two first order ODEs
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Thisapproachdoes not conserveenergy 1

It will havebig issues longterm or for
oscillations

It is corrected by Cromer 1963
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