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A minor modification of the standard Euler approximation for the solution of

oscillatory problems in mechanics yields solutions that are stable for arbitrarily large
number of iterations, regardless of the size of the iteration interval. The period of a
nonlinear oscillator converges rapidly to its exact value as the size of the iteration
interval is decreased. In two dimensions, closed orbits are given for the two-body
Kepler problem and the restricted three-body problem can be iterated indefinitely to
produce space-filling orbits. In this new approximation, the difference AE between the
initial energy and the energy after n iterations is bounded, oscillatory, and zero when

averaged over half a cycle of the motion.

I. INTRODUCTION

The rapidly increasing availability of microcomputers
and programmable calculators has stimulated interest in
simple numerical methods that students can use to solve
physics problems.!2 Of particular interest is the numerical
solution of mechanics problems, because these problems
vividly demonstrate the dynamic nature of Newton’s second
law. ‘

For a particle of unit mass moving in one dimension, the
position x at time ¢ is related to the force F(x) by the
first-order differential equations

v=F(x), x=v. (1)
This set of equations is solved numerically by converting it
to a set of difference equations and then iterating. The Euler
approximation, the midpoint approximation, and the
half-step approximation are three linear approximations
commonly used to solve Egs. (1), although the half-step
approximation is much better than the other two.

In this paper we present a new linear approximation that
is better than the half-step approximation. Furthermore,
we present an analytic proof of the superiority of the new
approximation. This proof shows that the usual explanation!
of why the half-step approximation is better than the Euler
approximation is wrong. The difference between these ap-
proximations is not how well they approximate the deriv-
ative at each point, but on how well they approximate the
first integral of the motion.

Let D be the time interval between successive iterations,
so that the time ¢, of the nth iteration is

t, =tg+ nD. 2)

Let x, and v, be the values of x and v on the nth iteration,
and let F,, = F(x,). Then the Euler, or first-point, ap-
proximation (FPA) is

Unt1 =0y + F,D ]FPA Q)
Xn+1 = Xp + 0,D
We call this the first-point approximation because, in the
equation for x,4;, the velocity v, at the beginning of the
iteration interval is used to estimate the average velocity
during the interval.

The midpoint approximation (MPA) is
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Ups1 =0y + FpD
Xp+1 = X + (1/2)(Un + vpt1)D

This approximation seems more reasonable than the FPA,
and in fact it does give exact results when F is a constant.
However, for more general problems, it is not substantially
better than the FPA. Both approximations are equally poor,
because their errors increase with each iteration. In the case
of a one-dimensional oscillator, for instance, these ap-
proximations give solutions whose maxima increase with
each cycle.
The half-step approximation (HSA) is

MPA.  (4)

U12 =vo + (1/2)FeD
Ont1/2 = Upn—12+ F,D p HSA. %)
Xn+1 = Xp + Upt 12D

As can be seen, the velocity is iterated in between the po-
sition. Although it is considerably more difficult to explain
than the FPA, it is no more difficult to program. It is,
however, a very much better approximation than the FPA
or MPA, because its error is bounded. This means that Eqgs.
(5) can be iterated indefinitely, without the error ever
growing beyond a fixed value. The usual explanation of this
approximation’s superiority is that, by using the velocity
in the middle of the interval, it estimates the average ve-
locity better than the FPA. This explanation is not correct,
because the MPA, which does a similar thing, is no better
than the FPA. Moreover, a still better approximation is
obtained by using the velocity at the end of the interval.
The last point approximation is

Up+1 = Uy + F,,D

LPA. 6
Xnt1 = Xp + Op41D ] ©)

As unpromising as it looks, this approximation is superior
to the HSA. It yields solutions that, for oscillatory problems,
have errors that are bounded, oscillatory, and zero when
averaged over half a period. The LPA yields stablg solutions
that can be iterated indefinitely. As a result, an under-
graduate—and even a high school student—can obtain very
accurate solutions to advanced mechanics problems.

The LPA was discovered quite by accident by Abby
Aspel,? a student at Newton North High School (Newton,
MA). She was working on a computer program for the
Kepler problem, and had written the correct program for
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Table I.  Period for oscillations of unit amplitude in the force F = —x
— bx3, The exact values are from Chen, and the other values are found
from the last point approximation [Eqgs. (8)] run for N cycles with an it-
eration interval D.

b 1 4 9
exact 4.768 3.181 2.294
D=02,N=10 4.72 3.10 2.14
D=005,N=4 4.76 3.175 2.265
D=0001,N=05 4.768 3.179 2.294

the FPA. The equivalent program in one-dimension is

100 F = (function of X)

110X =X+ V*D

120V =V + F*D FPA. @)
130 PRINT X, V

140 GOTO 100

Although this program worked fairly well for half an orbit
(about 14 iterations), the solution started to diverge during
the second half. Thinking she had made a mistake, Aspel
interchanged statements 110 and 120. The new program
is

100 F = (function of X)

110V =V + F*D

120X =X + V*D LPA. (8)
130 PRINT X, V

140 GOTO 100

Unbelievably, this program produced a closed orbit in 28
iterations. Comparing Egs. (3) and (6) to Eqs. (7) and (8)
we can see that interchanging the order in which x and v are
computed changes the velocity used in the position equation
from v, 10 U,41. ,

Since the difference between the FPA and the LPA is
only the interchange of two lines in a computer program,
many people must have used the LPA without realizing it.
Perhaps because the LPA gives such good results, they
never suspected that they had made a mistake (or a dis-
covery). The standard books on numerical analysis* do not
mention the LPA, and as far as I can determine, the proof
given in Sec. III of the validity of the approximation is en-
tirely new. This proof explains why these four different
linear approximations yield solutions of greatly different
accuracy.

In Sec. II we present some test calculations that dem-
onstrate the accuracy of the last point approximation and
in Sec. 111 we prove analytically that the error oscillates
about an average value of zero.

II. CALCULATIONS

As a first test of the LPA, we shall find the period 7 of
a particle moving under the influence of the nonlinear
force

F=—kx — bx3. 9)
In terms of the potential energy
U= (1/2)kx? + (1/4)bx*
the period is given by3
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T=23 j;" [E — U(x)]-"/2dx
= (4/VKNK([(A = 1)/27]'/?),

where A is the amplitude, the parameter A is
A=bA%k + 1,

and X is the complete elliptic integral of the first kind. Chen
gives the exact value of T for several values of A. Here we
shall find the period in a half-hour exercise that a high
school student can perform.

The program in Eqgs. (8) was run using the function in Eq.
(9) with k = 1 and different values of b. In all cases the
initial conditions were x = 1, v =0, s0 4 = 1. Table I shows
the results obtained using different values of the iteration
interval D.

The program in Eqs. (8) is perfectly stable. It can be run
for hundreds of cycles with no observable error accumula-
tion. To find T, the program is run for N cycles, and the
elapsed time divided by N.

Table I shows that with D = 0.2 and N = 10, the LPA
gives periods that differ from the exact values by between
1 and 7%. With D = 0.05 and N = 4, the errors vary from
0.01 to 1%, and with D = 0.001 and N = 0.5, the results are
exact to four significant figures. Thus the accuracy of the
LPA is equal to its precision. The LPA calculates the period
to within the iteration interval D, because it has no accu-
mulation of error, even after thousands of iterations.

To better understand this approximation, it is helpful to
plot the motion of the nonlinear oscillator in phase space.
With an Apple l-plus microcomputer this can be done
directly on a TV screen. Figure 1 shows such a plot of v
against x for the case b = 4 and D = 0.05. Figure 1 is the
way the TV screen looks after ten cycles have been plotted.
To within the resolution of the screen (about one percent),
all the computed cycles fall on the same curve.

The amazing stability of the LPA indicates that some-
thing exact is going on. In the FPA, the phase-space curve
spirals outward, because the energy of the system increases
monotonically. Clearly there is no such monotonic increase

Fig. 1. Phase space diagram of the motion of a particle of unit mass in the
force F = —x —4x3. The curve was calculated using the LPA with initial
conditions x = 1 and » = 0, and with the iteration interval D = 0.05.
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Fig. 2. The relative energy f, = (E, ~ Eo)/Eo plotted against ¢, = nD for
the oscillator in Fig. 1.

in the LPA. Figure 2 is a plot of the relative energy
change

f, -_-_A_E=E_—n_E0
" E E,

against ¢, = nD for one cycle of the motion shown in Fig.
1. Here

En = (1/2)02 + U(xy).

Figure 2 shows that in the LPA, the energy oscillates about
Eo with a period one-half the period of the oscillator. In Sec.
III we shall prove that this is a general property of the ap-
proximation. The error in calculating the time for the os-
cillator to move from x = A4 to x = 0 is almost exactly the
negative of the error in calculating the time from 0 to —A.
Thus in half a cycle, the errors of the approximation cancel
to a large extent. '

The LPA was discovered while working on the numerical
solution of the Kepler problem. Because the approximation
self-corrects in half a cycle, it produces closed orbits with
only 100 iterations per cycle (D = 7/100). Figure 3 is a
typical elliptical orbit as it appears on the TV screen after
dozens of cycles. In this case, D = 0.2, xo = —4, yo = 0, 5o

=0, v,0 = 1.8, and the potential energy is —GM/r, with GM

= 10. The initial energy is —0.88, and the maximum value

Fig. 3. Orbit of a planet moving about a star with mass GM = 10. The
initial radius is 4 and the initial (tangential) speed is 1.8. The orbit was
calculated using the LPA with initial condition xo = —4, yo = 0,050 = 0,
vyo = 1.8, and with the iteration interval D = 0.2.

457 Am. ). Phys., Vol. 49, No. 5, May 1981

of |f| is 0.025. The calculated period is T = 27 and the
calculated semimajor axis is @ = 5.75. The exact values for
these quantities are

1 = ~GM/(2E) = 5.68,
and
T =2wa3/2(GM)~1/2 = 26.9.

Again we see that the calculation is exact to within the
precision set by the choice of the iteration interval.

The stability of the LPA for orbit calculations means that
it can be used to study the effects of atmospheric drag on
earth-orbiting satellites and the effect of small departures
from an inverse-square force on the orbits of planets.

Finally, in Fig. 4, we show some orbits of a planet moving
in the gravitational field of two fixed stars of equal mass.
The details of this calculation, including a computer pro-
gram that uses an FPA-like approximation, have been given
by Wild.2 To get the results shown here, it is necessary only
to interchange statements 00-15 with statements 16-66 in
his program.®.
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Fig. 4. Stable space-filling orbits for a planet moving about two fixed stars
with masses GM = 10. The parameters for these orbits are given in Table
11. (a) Open loop. (b) Figure eight.
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Table 1. Parameters for two stable three-body orbits. This table gives
the initial conditions, iteration interval, and calculated period for the two
orbits shown in Fig. 4. The two stars each have a mass GM = 10 and are
separated by a distance of 5.93. The left-hand star is at the origin.

orbit type X0 Yo Ux0 Uyo D T
open loop -4 0 0 2 0.2 20.4
figure eight -2 0 0 23 0.05 10.7

As pointed out by Wild, the FPA cannot be used to follow
the history of an orbit for more than two cycles. Even during
this limited time interval, the energy of the system is con-
stantly changing, so the orbits calculated by the FPA do not
represent the true motion to any meaningful degree. In
contrast, with the LPA, the energy of the system oscillates
within narrow limits, except when the planet comes too close
to a star. During a close encounter, the energy changes by
50% or more. In a moderately close encounter, the motion
remains bounded, and the energy returns to its initial value
as the planet moves away. In an extremely close encounter,
the energy becomes positive, and the planet shoots off to
infinity. To avoid these unphysical results, Fig. 4 shows two
orbits that never make a close encounter of either kind. The
parameters of these orbits are given in Table II.

Figure 4(a) shows the open-loop orbit after several rev-
olutions. Because of the large radius of this orbit, an itera-
tion time of 0.2 is sufficient to keep the energy constant to
within 2.5%. Thus the orbit shown in Fig. 4(a) is calculated
as accurately, and as easily, as the elliptical orbit in Fig. 3.
This orbit has been calculated for over 100 revolutions
(12000 iterations) without incident. In time, the orbit
completely fills an oval ring around the two stars.

Figure 4(b) shows the figure-eight orbit after several
revolutions. Because of the smaller radius, an iteration in-
terval of 0.05 is needed to keep the energy constant to within
10%. This orbit has been calculated for over 60 revolutions
(12000 iterations) without incident. In time, it too fills a
twisted strip that encircles the two stars.

Thus unlike the FPA, the LPA can find the stable
three-body orbits as well as interesting irregularly looped
orbits. By making the second star a large planet moving in
a fixed orbit about the first star, the LPA should be able to
make reliable perturbation calculations.

III. PROOF OF STABILITY

In Sec. II we showed empirically that the LPA con-
serves energy, on the average, for oscillatory motion. In this
section we shall prove this analytically, thus putting the
LPA on a sound theoretical basis.

Without loss of generality, we let vg = 0. Then, iterating
Egs. (6) n times, we get

= (F0+F1+°"+Fn_1)D=S,,_1, (10)

Xn+1 =x,,+S,,D, (11)
where
S,=D3 F, (12)
j=0

Had we used the FPA [Eqs. (3)], the last term in Eq. (11)
would be S, 1D instead of S,.D. This is where the critical
difference in the two approximations comes in.
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With vo = 0, the change in kinetic energy between ¢
=0and¢, =nDis

AK, =K, — Ko = (1/2)S2_,. (13)

The change in potential energy over this same time interval
is

AU, = - f ™ F(x)dx.
x0
Using the trapezoid rule to evaluate this integral, we get
n—1
AU, = —=(1/2) '2:'0 (Fi + Fir)(xie1 — xi)
n—1
= "'(1/2)D Z (F,' + Fi+1)Si

= —(1/2)p? Z Z (Fi + Fix))F;.

i=0 j=0

The key point here is that, since j runs from 0 to 7 (instead
of i = 1), AU, has the same squared terms as AK,,. Sepa-
rating out these terms, we can rewrite AU, as

AU, ——(1/2)02(2 F2+ >: zFF+g zF, )

i=0 j=
-—-(1/2)1)2(2 FP+2'S 'z FiFj + F, ”ZIF)

<0 j<
= _(]/2)Sn— (1/2)DFnSn—I- (]4)

Thus the change in total energy as given by the LPA is
AE, = AK, + AU, = —(1/2)DF,S,-,
= —(1/2)DF,v,, (15)

where we again use Eq. (10).

For oscillatory motion, v, is zero at the turning points and
F, is zero at the equilibrium point. Thus AE, goes through
zero four times in each cycle, which proves that it oscillates
with a period equal to half that of the oscillator, as dem-
onstrated in Fig. 2. Furthermore, the maximum value of
AE, is bounded, since both F,, and v, are bounded. Finally,
the average of AE, over half a cycle is

2 (1y27/D /2T
(Mg, =2 p D J‘ Fodt
T =0 T Jo

= —(D/THUI(1/2)T) - U(0)} = 0

since U has the same value at each turning point. This
proves that, on the average, the LPA conserves energy for
oscillatory motion.
Applying the same method of analysis to the FPA, we

find that the expression for AE, has the term

n—1

T F}

i=0
in it. Since this term increases monotonically with 7, the

error in the energy increases with . On the ather hand, in
the HSA, the energy change is found to be

E, = —(1/8)D%(F} — F).

With the initial condition vo = O that we are using, Fz = F2.
Thus AE, oscillates between 0 and —(1/ 8)D2Fo twice
during each cycle. The energy in the HSA is bounded as in
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the LPA, but the average energy change during a cycle is
not zero. This means that the HSA will not be as accurate
as the LPA in calculating the period of an oscillator.

This analysis shows that the difference between the dif-
ferent linear approximations is not how well they approxi-
mate the derivative at each point, but how well they ap-
proximate the first integral of the motion.

IV. CONCLUSIONS

The last point approximation is a simple but powerful
method for solving problems of oscillatory motion. The
proof of the approximation’s stability is simple enough to
give to upperclass undergraduates, and the approximation
itself is simple enough to be used by a high school stu-
dent.
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With such an elegant tool at our disposal, the three-body
problem may become as much a part of the introductory
physics curriculum as the inclined plane.”
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