Minkowski suggested a better way to write K^{μ} is in terms of the field tensor, $F^{\mu \nu}$,

$$
K^{\mu}=\frac{d p^{\mu}}{d \tau}=q \eta_{\nu} F^{\mu \nu}
$$

What are the units of the components of the field tensor?
A. $\frac{N}{m}$
B. T
C. $\frac{N s}{C m}$
D. $\frac{V}{m}$
E. None or more than one of these

Switch from frame S to frame \bar{S} :

How does E_{x} compare

> to $\bar{E}_{x} ?$
> A. $\bar{E}_{x}=E_{x}$
> B. $\bar{E}_{x}>E_{x}$
> C. $\bar{E}_{x}<E_{x}$

Frame \bar{S}

Consider the equation

$$
\frac{\partial G^{\mu \nu}}{\partial x^{\nu}}=0
$$

How many ordinary equations is that really?
A. 1
B. 4
C. 6
D. 16
E. ????

